Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Doping Optimization of Solar Grade (SOG) Silicon Ingots for Increasing Ingot Yield and Cell Efficiency

https://doi.org/10.17073/1609-3577-2015-2-103-109

Abstract

In the close future, use of SoG should become prominent for photovoltaic ingot production as it requires much less energy for purification compared to Silicon grades using gas transformation and purification (usually Siemens process or equivalent also used for electronic−grade preparation). During this study, several kinds of silicon were compared with different rates of dopant content (mainly boron and phosphorus). Ingot yield and cell efficiency were optimized for each source of silicon at a production level (450 kg ingots) using boron or gallium doping. Starting from the resistivity specification given by the cell process, the doping level was adjusted in order to maximize the ingot silicon yield (weight of silicon bricks used for wafer cutting/ weight of Silicon ingot). After doping adjustment, ingot quality was checked: brick resistivity, lifetime of minority carriers and wafers were processed into solar cells. Optimizing of doping led to get comparable ingot yields and cell efficiencies using SoG and silicon purified by Siemens process or equivalent. The study was implemented at Kazakhstan Solar Silicon plant in Ust−Kamenogorsk using Kazakhstan SoG, SoG from a European manufacturer and polycrystalline Silicon purified by Siemens process. Directional solidification furnaces were manufactured by the French company ECM Technologies.

About the Authors

A. A. Betekbaev
«MC «KazSilicon» LLP.
Kazakhstan

Chairman of the Supervisory Board of «MC KazSilicon”» LLP, Kazatomprom,

Bastobe, 041011



B. N. Mukashev
«MC «KazSilicon» LLP.
Kazakhstan

Professor, Doctor of science, Academician of NAS RK,

Bastobe, 041011



L. Pelissier
ECM Greentech
France

CEO,

109 Rue Hilaire de Chardonnet, 38100 Grenoble



Ph. Lay
ECM Greentech
France

PhD, Technical Director,

109 Rue Hilaire de Chardonnet, 38100 Grenoble



G. Fortin
ECM Greentech
France

R&D Engineer,

109 Rue Hilaire de Chardonnet, 38100 Grenoble



L. Bounaas
ECM Greentech
France

PhD, R&D Engineer,

109 Rue Hilaire de Chardonnet, 38100 Grenoble



D. M. Skakov
«MC «KazSilicon» LLP.
Kazakhstan

General manager,

Bastobe, 041011



A. A. Pavlov
«MC «KazSilicon» LLP.
Kazakhstan

Engineer of PTD,

Bastobe, 041011



References

1. Luque A., Hegedus S. S. Handbook of photovoltaic science and engineering. John Wiley & Sons Ltd, 2011. 1162 p. DOI: 10.1002/9780470974704.

2. Coletti G., Bronsveld P. C. P., Hahn G., Warta W., Macdonald D., Ceccaroli B., Wambach K., Quang N. L., Fernandez J. M. Impact of metal contaminations in silicon solar cells. Adv. Funct. Mater. 2011, vol. 21, no. 5. pp. 879—890. DOI: 10.1002/adfm.201000849

3. Becker J.S., Dietze H.J. State−of−the−art in inorganic mass spectrometry for analysis of high−purity materials. International Journal of Mass Spectrometry. 2003, vol. 228, pp. 127—150.

4. Shcolnik V. S., Betekbaev A. A., Mukashev B. N. High−tech technologies to create silicon solar energy in Kazakhstan. Doklady NAN RK. 2014, no 1, pp. 5—19. (In Russ.)

5. Mukashev B. N., Betekbaev A. A., Skakov D. M., Pellegrin I, Pavlov А. А., Bektemirov Zh. Upgrading of Metallurgical Grade Silicon to Solar Grade Silicon. Eurasian Chemico−Technological Journal, 2014, vol. 16, pp. 309—313.

6. Betekbaev A. A., Mukashev B. N., Ounadjela К., Pavlov A. A., Pellegrin I., Shcolnik V. S. КazPV Project: Industrial Development of Vertically Integrated PV Production in Kazakhstan (From Quartz Processing up to Production of Solar Cells & Modules). 24th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes. Breckenridge (Colorado, USA), 2014, pp. 101—107.

7. Peral A., Míguez J. M., Ordás R., del Cañizo C. Lifetime improvement after phosphorous diffusion gettering on upgraded metallurgical grade silicon. Solar Energy Materials & Solar Cells. 2014, vol. 130, pp. 686—689. DOI: 10.1016/j.solmat.2014.02.026

8. Sinton R. A., Cuevas A. Contactless determination of current−voltage characteristics and minority−carrier lifetimes in semiconductors from quasi−steady−state photoconductance data. Appl. Phys. Lett. 1996, vol. 69, no. 17, pp. 2510—2512. DOI: http://dx.doi.org/10.1063/1.117723.

9. Mukashev B. N., Betekbaev A. A., Kalygulov D. A., Pavlov A. A., Skakov D. M. Research of the silicon obtaining processes and development of solar cells manufacturing technologies. Fizika i tekhnika poluprovodnikov = Semiconductors. 2015, vol. 49, no. 10, pp. 1421—1428.

10. Burton J. A., Prim R. C., Slichter W. P. The distribution of solute in crystals grown from the melt. 1: Theoretical. J. Chem. Phys. 1953, vol. 21, no. 11, pp. 1987—1991. DOI: 10.1063/1.1698728.

11. Scheil E. emerkungen zur schichtkristallbildung / E. Scheil Z. Metallkd. 1942, vol. 34, pp. 70—72. (In German)

12. Arora N. D., Hauser J. R., Roulston D. J. Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Transactions on Electron Devices. 1982, vol. 29, no. 2, pp. 292—295. DOI: 10.1109/T−ED.1982.20698

13. Schmidt J., Bothe K. Structure and transformation of the metastable boron− and oxygen−related defect center in crystalline silicon. Phys. Rev. B. 2004, vol. 69, no. 2, pp. 24107—24115. DOI: http://dx.doi.org/10.1103/PhysRevB.69.024107

14. Fourmond, E., Forster M., Einhaus R., Lauvray H., Kraiem J., Lemiti M. Electrical properties of boron, phosphorus and gallium co−doped silicon. Energy Procedia. 2011, vol. 8. pp. 349−354. DOI: 10.1016/j.egypro.2011.06.148

15. Myers S. M., Seibt M., Schroter W. Mechanisms of transition−metal gettering in silicon. J. Appl. Phys. 2000, vol. 88, no. 7, pp. 3795—3819. DOI: http://dx.doi.org/10.1063/1.1289273.

16. Macdonald D. H. Recombination and trapping in multicrystalline silicon solar cells. PhD Thesis. The Australian National University, 2001.


Review

For citations:


Betekbaev A.A., Mukashev B.N., Pelissier L., Lay P., Fortin G., Bounaas L., Skakov D.M., Pavlov A.A. Doping Optimization of Solar Grade (SOG) Silicon Ingots for Increasing Ingot Yield and Cell Efficiency. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(2):103-109. (In Russ.) https://doi.org/10.17073/1609-3577-2015-2-103-109

Views: 1139


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)