Diagnostics of Impurity Composition of High–Pure Monosilane by Results of the Analysis of a Test Silicon Single Crystal
https://doi.org/10.17073/1609-3577-2014-4-240-245
Abstract
Elements III and V of groups of the Periodic System and carbon are the most important impurities in silicon. The estimation technique of carbon, boron and phosphorus impurity content in high−purity monosilane has been proposed. The technique involves the preparation of polycrystalline silicon by silane decomposition, growing a test single crystal by the floating zone melting method and analysis of single crystal samples by IR spectroscopy. Calculation of impurity concentration in polycrystalline silicon were performed using results on their content in the test single crystal samples, data on impurity distribution of in the liquid−solid system and sample coordinates along the ingot length. Effective impurity distribution coefficient in the «solid−liquid» system for specific growing conditions have been calculated using the Burton−Prim−Slichter equation.
Results for the test silicon samples with natural isotopic composition and the enriched 28Si isotope obtained from monosilane samples with different impurity contents have been reported. Results of IR spectroscopic research of impurity composition for the test silicon single crystal are in agreement with the concentration data obtained by chromatography. The concentration of III and V group impurities in monosilane were in the range 4 ⋅ 10−9—2 ⋅ 10−6 at. %, and for carbon 2 ⋅ 10−6—6 ⋅ 10−4at.%. The measurement uncertainty by IR spectroscopy method for carbon impurity does not exceed 15 %, for boron and phosphorus — 20%. We show that the upper limit of carbon content in monosilane detected using this method is determined by its solubility in silicon, while the bottom limit depends on the detection accuracy of the IR spectroscopy technique and possible background contamination.
About the Authors
V. A. GavvaRussian Federation
Leading Researcher, Cand. Sci. (Chem.)
A. V. Gusev
Russian Federation
Head of Laboratory, Dr. Sci. (Chem.)
T. V. Kotereva
Russian Federation
Senior Researcherк, Cand. Sci. (Chem.)
References
1. Belov E. P., Lebedev E. N., Grigorash Yu. P., Goryunov A. N., Litvinenko I. N. Monosilan v tekhnologii poluprovodnikovykh materialov [Monosilane in technology of semiconductor materials]. Moscow: NIITEKhIM, 1989. 65p. (In Russ.)
2. Bochkarev E. P., Elyutin A. V., Ivanov L. S. Semiconductor polycrystalline silicon Izvestiya vuzov. Tsvetnaya metallurgiya = Non−ferrous Metals. 1997, no. 5, pp. 20—26 (In Russ.)
3. Falkevich E. S., Pulner E. O., Hearts I. F., Schwartzman L. Y., Bright V. N., Sally I. V. Tekhnologiya poluprovodnikovogo kremniya [The technology of semiconductor silicon]. Moscow: Metallurgiya, 1992. 408 p. (In Russ.)
4. Krylov V. A. , Sozin A. Y., Zorin V. A., Berezkin V. G., Krylov V. A. Chromatography−mass spectrometric determination of impurities in isotope−enriched high−purity silane. Massspektrometriia = Mass Spectrometry. 2008, vol. 6, no. 4, pp. 225—233. (In Russ.)
5. Sennikov P. G., Kotkov A. P., Adamchik S. A., Grishnova N. D., Chuprov L. A., Ignatov S. K. Impurities in monosilane synthesized by various methods . Neorganicheskie materialy = Inorganic Materials. 2010, vol. 46, no. 4, pp. 415—420. (In Russ.)
6. Gusev A. V., Gavva V. A, Kozyrev E. A. Single crystals growth of stable silicon isotopes. Perspektivnye materialy = Advanced Materials. 2010, vol. 8, pp. 366—369. (In Russ.)
7. Sennikov P. G., Kotereva T. V., Kurganov A. G., Andreev B. A., Niemann H., Schiel D., Emtsev V. V., Pohl H.−J. Spectroscopic parameters of LVM absorption bands of carbon and oxygen impurities in isotopic enriched silicon 28 Si, 29 Si and 30 Si. Fizika i tekhnika poluprovodnikov = Semiconductors. 2005, vol. 39, no. 3, pp. 320—326.
8. Kotereva T. V., Gusev A. V., Gavva V. A., Kozyrev E. A. Isotopic Effects in the Infrared Absorption Spectra of Electrically Active Impurities in Silicon 28, 29, and 30 with High Isotopic Enrichment. Russian Microelectronics. 2013, vol. 42, no. 8, pp. 453—457.
9. ASTM F 1630–00. Standard Test Method for Low Temperature FT−IR Analysis of Single Crystal Silicon for III−V Impurities. pp. 1—7
10. ASTM F 1391−93. Standard Test Method for Substitutional Atomic Carbon Content of Silicon by Infrared Absorption. pp. 515—519
11. Pfann V. Zonnaya plavka [Zone melting]. Moscow: Mir, 1970. 336 p. (In Russ.)
12. Poluprovodniki [Semiconductors] / Pod red. N. B. Henneya. Moscow: Izdatel’stvo inostrannoi literatury, 1962. 668p. (In Russ.)
13. Vavilov V. S., Kiselev V. F., Mukashev B. N. Defekty v kremnii i na ego poverkhnosti [Defects in silicon and it`s surface]. Moscow: Nauka, 1990. 216 p. (In Russ.)
14. Tang, K., Ovrelid E. J., Tranell G., Tangstad M. SINTEF Materials and Chemistry, N−Thermochemical and Kinetic Databases for the Solar Cell Silicon. Materials The Twelfth International Ferroalloys Congress Sustainable Future. Helsinki (Finland), 2010. Pp. 619—629.
15. Kovalev I. D., Kotereva T. V., Gusev A. V., Gavva V. A., Ovchinnikov D. K. Definition of oxygen and carbon impurities in polycrystalline silicon by IR−spectroscopy method. Zhurnal analiticheskoi khimii = Journal of analytical chemistry. 2008, vol. 63, no. 3, pp. 274—278. (In Russ.)
Review
For citations:
Gavva V.A., Gusev A.V., Kotereva T.V. Diagnostics of Impurity Composition of High–Pure Monosilane by Results of the Analysis of a Test Silicon Single Crystal. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2014;(4):240-245. (In Russ.) https://doi.org/10.17073/1609-3577-2014-4-240-245