Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Ge Distribution in Si0.9Ge0.1 Alloy Ingot Grown from Thin Melt Layer

https://doi.org/10.17073/1609-3577-2014-4-246-251

Abstract

We studied experimentally and theoretically the possibility to obtain a uniform single crystal of SiGe alloy enriched at the Si side. The content of the second component in a crystal 15 mm in diameter and 40 mm in length grown by the modified floating zone technique from the charge of 79.8 at.% Si and 20 at.% Ge composition with 0.2% B admixture has been investigated using selected area Xray analysis in different points and in line scanning mode along and across the crystal axis. The longitudinal changes in the germanium concentration of proved to be well described by the analytical equation previously derived for conditions of Sb (Ga) doped Ge growth from a thin melt layer in the presence of a heater submerged into the melt. For a more accurate description of the experimental data we made allowance for the change in the melt layer thickness between the growing crystal and the bottom of the submerged heater. The lateral distribution of the second component, not exceeding 5% over a diameter of the crystal, can be significantly improved by reducing the curvature of the phase interface during the growth. 

About the Authors

M. Gonik
Centre for Material Researches «Photon», 10 Cheska Lipa Str., Aleksandrov, Vladimir Region, 601655 Russia
Russian Federation

Cand. Sci. (Eng.), Director



A. Cröll
Institute för Geosciences of University of Freiburg, Hermann−Herder−Straβe 5, 79104 Freiburg, Germany
Germany

Prof. Dr. rer. nat., Dipl.−Min., Director of Institute



A. Wagner
Institute för Inorganic and Analytical Chemistry, Albertstraβe 21, D−79104 Freiburg, Germany
Germany

PhD, student



References

1. Abrosimov N. V., Lüdge A., Riemann H., Kurlov V. N., Borissova D., Klemm V., Bastie P., Hamelin B., Smither R. K. Growth and properties of Ge1−xSix mosaic single crystals for γ−ray lens application. J. Cryst. Growth. 2005, vol. 275, pp. 495—500.

2. Abrosimov N. V., Kurlov V. N., Rossolenko S. N. Automated control of Czochralski and shaped crystal growth processes using weighing techniques. Progress in Crystal Growth and Characterization of Materials. 2003, pp. 1—57.

3. Croell A., Mitric A., Senchenkov A. Detached Bridgman Growth of Germanium−Silicon crystals under microgravity. Abstracts in ICASP−2. Seggau (Austria), 2008.

4. Campbell T. A., Schweizer M., Dold P., Cröll A., Benz K. W. Float−zone growth of Ge1−xSix (x < 10 at.%) single crystals: Influence of thermocapillary and solutocapillary convection. J. Cryst. Growth. 2001, vol. 226, pp. 231—239.

5. Usami N., Kitamura M., Obara K., Nose Y., Shishido T., Nakajima K. Floating zone growth of Si−rich SiGe bulk crystal using pre−synthesized SiGe feed rod with uniform composition. J. Cryst. Growth. 2005, vol. 284, pp. 57—64.

6. Kyazimova V. K., Zeynalov Z. M., Zakhrabekova Z. M., Azhdarov G. Kh. Distribution of aluminum and indium impurities in crystals of Ge–Si solid solutions grown from the melt. Crystallography Reports. 2006, vol. 51, pp. S192—S195.

7. Nakajima K., Azuma Y., Usami N, Sazaki G., Ujihara T., Fujiwara K., Shishido T. Growth of InGaAs and SiGe homogeneous bulk crystals which have complete miscibility in the phase diagrams. Int. J. Materials and Product Technology. 2005, vol. 22, no. 1/2/3, pp. 185—212.

8. Kinoshita K., Arai Y., Inatomi Y., Miyata H., Tanaka R., Sone T., Yoshikawa J., Kihara T., Shibayama H., Kubota Y., Shimaoka T., Warashina Y., Sakata K., Takayanagi M., Yoda S. Homogeneous SiGe crystal growth in microgravity by the travelling

9. liquidus−zone method. J. Phys.: Conf. Ser. 2011, vol. 327, p. 12017. DOI:10.1088/1742−6596/327/1/012017.

10. Kinoshita K., Arai Y., Inatomi Y., Miyata H., Tanaka R., Yoshikawa J., Kihara T., Tomioka H., Shibayama H., Kubota Y., Warashina Y., Sasaki Y., Ishizuka Y., Harada Y., Wada S., Harada C., Ito T., Takayanagi M., Yoda S. Growth of a Si0.50Ge0.50 crystal by the traveling liquidus−zone (TLZ) method in microgravity. J. Cryst. Growth. 2014, vol. 388, pp. 12—16.

11. Ostrogorsky A. G. Single−crystal growth by the submerged heater method. Meas. Sci. Technol. 1990, vol. 1, pp. 463—464.

12. Golyshev V. D., Gonik M. A. A temperature field investigation in case of crystal growth from the melt with a plane interface on exact determination thermal conditions. Cryst. Prop. and Preparation. 1991, vol. 36–38, p. 623.

13. Gonik M.A., Cröll A. Silicon crystal growth by the modified FZ technique. CrystEngComm. 2013, vol. 15(12), pp. 2287—2293. DOI: 10.1039/c2ce26480c

14. Marin C., Ostrogorsky A. G. Growth of Ga−doped Ge0.98Si0.02 by vertical Bridgman with a baffle. J. Cryst. Growth. 2000, vol. 211, p. 378.

15. Gonik M. A., Gonik M. M., Tomson A. S. Influence of growth conditions on the composition uniformity of CdZnTe crystals. Neorganicheskie materialy = Inorganic materials. 2009, vol. 45, no. 10, pp. 1182—1191. (In Russ.)

16. Dutta P. S., Ostrogorsky A. G. Nearly diffusion controlled segregation of tellurium in GaSb. J. Cryst. Growth. 1998, vol. 191, pp. 904—908.

17. Ostrogorsky A. G., Mosel F., Schmidt M. T. Diffusion−controlled distribution of solute in Sn−1% Bi specimens solidified by the submerged heater method. J. Cryst. Growth. 1991, vol. 109, pp. 950—954.

18. Gonik M. A., Gonik M. M., Tsiulyanu D. Upravlenie formoi fronta kristallizatsii po modeli [Control of the crystallization front shape on the basis of the model]. XIV Natsionalnaya konferentsia po rostu kristallov = XIV National Conference on Crystal growth. Moscow, 2010. P. 98. (In Russ)

19. Gonik M. A., Cröll A. Si−Ge crystal growth by AHP method. Izvestiya vuzov. Materially elektronnoi tehniki = Materials of electronic technology, 2013, no. 3, pp. 12—19. (In Russ.)

20. Gonik M. A. Potential for growth of Si−Ge bulk crystals by modified FZ technique. J. Cryst. Growth. 2014, vol. 385, pp. 38—43. DOI: 10.1016/j.jcrysgro.2013.04.057

21. Wagner A. C., Croell A., Gonik M., Binetti S., Hillebrecht H. Si1−xGex (x ≥ 0.2) crystal growth in absence of a crucible. J. Cryst. Growth. 2014, vol. 401, pp. 762—766. http://dx.doi.org/10.1016/j.jcrysgro.2013.11.065

22. Marchenko M. P., Golyshev V. D., Gonik M. A., Fryazinov I. V. Chislennoe i eksperimental’noe issledovanie osobennostei teplomassoperenosa v protsesse vyrashchivaniya germaniya OTF metodom [Numerical and experimental study of features of the heat and mass transfer in Ge crystal growth by AHP method]. Proc. of Int. Conf. on Single crystal growth and heat & mass transfer. Obninsk, 2000. Pp. 125—134. (In Russ.)


Review

For citations:


Gonik M., Cröll A., Wagner A. Ge Distribution in Si0.9Ge0.1 Alloy Ingot Grown from Thin Melt Layer. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2014;(4):246-251. (In Russ.) https://doi.org/10.17073/1609-3577-2014-4-246-251

Views: 828


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)