Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Porous Silicon Based High Efficiency Photoelectrodes

https://doi.org/10.17073/1609-3577-2014-4-268-277

Abstract

The use of porSi electrodes promotes the separation of water molecules inside porSi nanopores and efficient evolution of hydrogen during water electrolysis. The porSi/cSi heterostructure allows solving one of the problems of water photoelectrolysis on silicon electrodes, i.e. their energetic insufficiency. Combined electrochemical and physical deposition of Ni on the surface of porSi, formation of NiSisilicide coatings on the surface of the pores and subsequent production of porSi photoelectrodes based on the NiSi/porSi/cSi/Al heterostructure results in an improvement of their corrosion resistance to oxidation and anodic dissolution, an increase in efficiency of hydrogen generation and enhancement of the photoelectrodes’ lifetime..

About the Authors

K. B. Tynyshtykbayev
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov Str. 11
Russian Federation

Dr. Sci. (Eng.), Professor, Chief Researcher



V. B. Glazman
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov Str. 11
Russian Federation

Researcher



D. Muratov
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov Str. 11
Russian Federation

Engineer



B. Rakhmetov
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov Str. 11
Russian Federation

Engineer



N. S. Tokmoldin
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov Str. 11
Russian Federation

PhD, Head of the Laboratory



S. Zh. Tokmoldin
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov Str. 11
Russian Federation

 Dr. Sci. (Phys.−Math.), Director



References

1. Gurevich Yu.Ya., Pleskov Yu. V. Fotoelektrokhimiya poluprovodnikov [Photoelectrochemistry semiconductors]. Moscow; Nauka, 1983. 312 p. (In Russ.)

2. Kulak A. I. Elektrokhimiya poluprovodnikovykh geterostruktur [Electrochemistry semiconductor heterostructures]. Minsk: BGU, 1986. 191 p. (In Russ.)

3. Su Su Khine Ma, Takashi Hisatomi, Kazuhiko Maeda, Yosuke Moriya, Kazunari Domen. Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts // J. Am. Chem. Soc. 2012, vol. 134, pp. 19993—19996.

4. Tynyshtykbaev K. B. Sposob modifitsirovaniya poverkhnosti kremnievogo fotokatoda dlya polucheniya vodoroda iz vody i vodnykh rastvorov elektrolitov [Method of modifying the surface of a silicon photocathode to produce hydrogen from water and aqueous electrolyte solutions]. A.S. RK, N 21396 ot 03.02.97. Byull. Izobr. N 4, 15.04.1999. (In Russ.)

5. Gerasimenko N. N., Smirnov L. S., Stas’ V. F., Tnyshtykbaev K. B. Defect centers in silicon irradiated by protons. Fizika i tekhnika poluprovodnikov = Semiconductors. 1981, vol. 15, iss. 10, pp. 1934—1937. (In Russ.)

6. Tynyshtykbaev K. B. Kremnievyi fotoelektrod [Silicon photoelectrode]. A. S. RK, N 20299 ot 14.02.97. Byul. Izobr. N 4, 15.04.1999. (In Russ.)

7. Starkov V. V. Poluchenie, svoistva i primenenie poristogo kremniya [Preparation, properties and applications of porous silicon]. Vse materialy. Entsiklopedicheskii spravochnik. 2009, no. 4, pp. 13—22. (In Russ.)

8. Erogbogbo F., Tao Lin, Tucciarone P. M., Lajoie K. M., Lai L., Patki G. D. On−demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity. Nano Lett. 2013, vol. 13, pp. 451—456.

9. Gerasimenko N. N., Tynyshtykbaev K. B., Starkov V. V., Medetov N. A., Tokmoldin S. Zh., Gosteva E. A. Om the commom nature of cracks on the example of monocrystalline silicon subjected to anodic etching. Fizika i tekhnika poluprovodnikov = Semiconductors. 2014, vol. 48, iss. 8, pp. 1117—1122. (In Russ.)

10. Goryachev D. N., Belyakov L. V., Sreseli O. M. Electrolytic method of porous silicon fabrication using internal current source. Fizika i tekhnika poluprovodnikov = Semiconductors. 2003. vol. 37, iss. 4, pp. 494—498. (In Russ.)

11. Starkov V. V., Tynyshtykbaev K. B. Proton−conducting membranes and electrodes for the μ−fuel cell portable current sources based on porous silicon. Proc. III International Symposium of Kazakhstan, Russia, USA «Nanotechnology, Energy, and Space». Almaty, 2013. P. 99.

12. Starkov V. V., Teterskiy A. V., Trofimov O. V. Electrocatalyst for silicon electrodes of microfuel cells. Fizika i khimiya obrabotki materialov = Physics and Chemistry of Materials Treatment. 2011, no. 3, pp. 71—78. (In Russ.)

13. Taehee Kim, Ho Lee, Woojong Sim, Jonghyun Lee, Saehoon Kim, Taewon Lim, Kwonpil Park. Degradation of proton exchange membrane by Pt dissolved/deposited in fuel cells. Korean J. Chem. Eng. 2009, vol. 26, no. 5, pp. 1265—1271.


Review

For citations:


Tynyshtykbayev K.B., Glazman V.B., Muratov D., Rakhmetov B., Tokmoldin N.S., Tokmoldin S.Zh. Porous Silicon Based High Efficiency Photoelectrodes. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2014;(4):268-277. (In Russ.) https://doi.org/10.17073/1609-3577-2014-4-268-277

Views: 1005


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)