Synthesis of Porous Silicon with Silver Nanoparticles by Low–Energy Ion Implantation
https://doi.org/10.17073/1609-3577-2014-4-278-283
Abstract
In this paper a new technique for synthesis of porous silicon layers with silver nanoparticles based on the method of low−energy and high−dose metal ion implantation into Si is proposed. For demonstration of this technique, room temperature Ag+ ion implantation of polished Si wafer with ion energy of 30 keV, ion dose of 1.5 ⋅ 1017 ion/cm2 and ion current density of 8 μA/cm2 was carried out. By high resolution scanning electron and atomic−force microscopy, electron probe microanalysis and Raman scattering we have shown that as a result of ion implantation a thin amorphous layer of porous Si is formed on the surface of irradiated Si with average pore sizes of 150—180 nm, pore depth of about 100 nm and wall thickness between pores of about 30—60 nm. Moreover, porous Si contains Ag nanoparticles with sizes of 5—15 nm. We established that during ion implantation the sputtering of Si surface by Ag+ ions occurs which was not observed before. On the basis of these data we concluded that the proposed physical technique for porous Si formation compared to chemical techniques could be integrated into an advanced process of fabrication and improvement of electronic circuits based on industrial ion implantation.
About the Authors
R. I. BatalovRussian Federation
Cand. Sci. (Phys.–Math.), Senior Researcher
V. F. Valeev
Russian Federation
Researcher
V. I. Nuzhdin
Russian Federation
Senior Researcher
V. V. Vorobev
Russian Federation
Postgraduate Student
Yu. N. Osin
Russian Federation
Director of ICAM (Kazan)
D. V. Lebedev
Russian Federation
Cand. Sci. (Phys.–Math.), Researcher
A. A. Bukharaev
Russian Federation
Dr. Sci. (Phys.–Math.), Head of Laboratory
A. L. Stepanov
Russian Federation
Dr. Sci. (Phys.–Math.), Leading Researcher
References
1. Izhenko A. A., Fetisov G. V., Aslanov L. A. Nanokremniy: svoystva, poluchenie, primenenie, metody issledovaniya i kontrolya [Nanosilicon: properties, formation, application, investigation and control methods]. Moscow: Fizmatlit, 2011. 573 p. (In Russ.)
2. Kozlovskiy V. V., Kozlov V. A., Lomasov V. N. Modification of semiconductors by proton beams. Fizika i tekhnika poluprovodnikov = Semiconductors. 2000, vol. 34, pp. 129—147. (In Russ.)
3. Lehmann V., Gosele U. Porous silicon formation: A quantum wire effect. Appl. Phys. Lett. 1991, vol. 58, pp. 856—868. DOI: 10.1063/1.104512
4. Stein H. J., Myers S. M., Follstaedt D. M. Infrared spectroscopy of chemically bonded hydrogen at voids and defects in silicon. J. Appl. Phys. 1993, vol. 73, pp. 2755—2764. DOI: 10.1063/1.353050
5. Amran T. S., Hashim M. R., Al−Obaidi N. K., Yazid H., Adnan R. Optical absorption and photoluminescence studies of gold nanoparticles deposited on porous silicon. Nanoscale Res. Lett. 2013, vol. 8, pp. 35—41. DOI:10.1186/1556−276X−8−35
6. Wang Y., Liu Y. P., Liang H. L., Mei Z. X., Du X. L. Broadening antireflection on the silicon surface realized by Ag nanoparticle−patterned silicon. Phys. Chem. Chem. Phys. 2013, vol. 12, pp. 2345—2350. DOI: 10.1039/C2CP44406B
7. Panarin A. Y., Chirvony V. S., Kholostov K. I., Turpin P.−Y., Terekhov S. N. Formation of SERS−active silver structures on the surface of mesoporous silicon. J. Appl. Spectr. 2009, vol. 76, pp. 280—287.
8. Kreibig U., Vollmer M. Optical properties of metal clusters. Berlin: Springer, 1995. 468 p.
9. Stepanov A. L. Ion−synthesis of metal nanoparticles and their optical properties. New York: Nova Sci. Publ., 2010. 81 p.
10. Stepanov A. L. Fotonnie sredy с nanochastitsami sintezirovannymi ionnoi implantatsiey [Photonic media with nanoparticles synthesized by ion implantation]. Saarbrukken: Lambert Acad. Publ., 2014. 353 p. (In Russ.)
11. Ziegler J. F., Biersack J. P., Littmark U. The stopping and range of ions in solids. New York: Pergamon Press, 1985. 465 p.
12. Tyschenko I. E., Popov V. P., Talochkin A. B., Gutakovsky A. K., Zhuravlev K. S. Formation of nanocrystalline silicon layers by high dose H+ implantation into silicon layers on isolator and subsequent rapid thermal annealing. Fizika i tekhnika poluprovodnikov = Semiconductors. 2004, vol. 38, pp. 111—116. (In Russ.)
13. Bukharaev A. A., Nurgazizov N. I., Sugonyako A. V. Monitoring of liquid etching of the implanted silicon dioxide by atomic−force microscopy. Microelektronika. 2002, vol. 31, pp. 121—128. (In Russ.)
14. Romano L., Impellizzeri G., Tomasello M. V., Giannazzo G., Spinella C., Grimaldi M. G. Nanostructuring in Ge by self−ion implantation. J. Appl. Phys. 2010, vol. 107, pp. 084314−1—084314−5. DOI: 10.1063/1.3372757
15. Gerasimenko N. N., Parkhomenko Yu. N. Kremniy — material nanoelektroniki [Silicon as nanoelectronics material]. Moscow: Tekhnosfera, 2007. 270 p. (In Russ.)
Review
For citations:
Batalov R.I., Valeev V.F., Nuzhdin V.I., Vorobev V.V., Osin Yu.N., Lebedev D.V., Bukharaev A.A., Stepanov A.L. Synthesis of Porous Silicon with Silver Nanoparticles by Low–Energy Ion Implantation. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2014;(4):278-283. (In Russ.) https://doi.org/10.17073/1609-3577-2014-4-278-283