FORMATION OF THREE−DIMENSIONAL STRUCTURES IN SILICON CARBIDE SUBSTRATES BY PLASMOCHEMISTRY ETCHING
https://doi.org/10.17073/1609-3577-2015-3-157-171
Abstract
This article is a review of the technology for the formation of three−dimensional structures in silicon carbide substrates. The technological solution of these problems ion−stimulation plasmochemistry etching in its various modifications, the most successful being by ICP sources (sources of inductively coupled plasma).
Silicon carbide consists of silicon and carbon which produce volatile fluorides in reaction with fluorine. Therefore for plasmochemistry etching of silicon carbide one uses fluorine−containing gases, most often sulfur hexafluoride (SF6), and sometimes with additions of oxygen and argon. During plasmochemistry etching of silicon carbide one uses the mask the material of which does not interact with fluorine. As a rule these are thin films of metals, e.g. Cu, Al and Ni, and sometimes films of silicon oxides.
The most important technological trend of this process is making through holes by etching of SiC substrates with GaN epitaxial layers, and their subsequent metallization.
In this review we will present examples of ICP source applications for the formation of micro− and nano−sized three−dimensional structures in silicon carbide substrates, including making through holes in SiC substrates with GaN epitaxial layers.
About the Author
L. A. SeidmanRussian Federation
Lev A. Seidman — Cand. Sci. (Eng.), Senior Researche r, Leading Expert on Technological Processes
References
1. Kim D. W., Lee H. Y., Park B. J., Kim H. S., Sung Y. J., Chae S. H., Ko Y. W., Yeom G. Y. High rate etching of 6H–SiC in SF6−based magnetically−enhanced inductively coupled plasmas. Thin Solid Films. 2004, vol. 447–448, pp. 100—104. DOI:10.1016/j.tsf.2003.09.030
2. Kim D. W., Lee H. Y., Kyoung S. J., Kim H. S., Sung Y. J., Chae S. H., Yeom G. Y. Magnetically enhanced inductively coupled plasma etching of 6H−SiC. IEEE Transactions on Plasma Science. 2004, vol. 32, no. 3, pp. 1362—1366. DOI: 10.1109/TPS.2004.828821
3. Jiang L., Cheung R., Brown R., Mount A. Inductively coupled plasma etching of SiC in SF6/O2 and etch−induced surface chemical bonding modifications. J. Appl. Phys. 2003, vol. 93, no. 3, pp. 1376— 1383. DOI: 10.1063/1.1534908
4. Jiang L., Cheung R. Impact of Ar addition to inductively coupled plasma etching of SiC in SF6/O2. Microelectronic Engineering. 2004, vol. 73—74, pp. 306—311. DOI: 10.1016/j.mee.2004.02.058
5. Ruixue D., Yintang Y., Ru H. Microtrenching effect of SiC ICP etching in SF6/O2 plasma. J. Semiconductors. 2009, vol. 30, no. 1, pp. 016001. DOI: 10.1088/1674−4926/30/1/016001
6. Ru H., Yin−Tang Y., Xiao−Ya F. Microtrenching geometry of 6H−SiC plasma etching. Vacuum. 2010, vol. 84, no. 3, pp. 400—404. DOI: 10.1016/j.vacuum.2009.09.001
7. Beheim G. M., Evans L. J. Control of trenching and surface roughness in deep reactive ion etched 4H and 6H SiC. Mater. Res. Soc. Symp. Proc. 2006, vol. 911, pp. 0911−B10−15. DOI: 10.1557/PROC−0911−B10−15
8. Osipov K. Y., Velikovskiy L. E. Formation technology of through metallized holes to sources of high−power GaN/SiC high electron mobility transistors. Semiconductors. 2012, vol. 46, no. 9, pp. 1216—1220. DOI: 10.1134/S1063782612090175
9. Cho H., Lee K. P., Leerungnawarat P., Chu S. N. G., Ren F., Pearton S. J., Zetterling C.−M. High density plasma via hole etching in SiC. J. Vac. Sci. Technol. A. 2001, vol. 19, pp. 1878—1881. DOI: 10.1116/1.1359539
10. Okamoto N. Elimination of pillar associated with micropipe of SiC in high−rate inductively coupled plasma etching. J. Vac. Sci. Technol. A. 2009, vol. 27, no. 2, pp. 295—300. DOI: 10.1116/1.3077297
11. Ruan J.−A., Roadman S., Lee C., Sellers C., Regan M. SiC substrate via etch process optimization. CS MANTECH Conf. Tampa (FL, USA), 2009. Pp. 113—116.
12. Ruan J.−A. Low RF power SiC substrate via etch. CS MAN-TECH Conf. Portland (OR, USA), 2010. Pp. 267—270.
13. Ruan J.−A., Hall C., Della−Morrow C., Nagle T., Yang Y. Backside Via Process of GaN Device Fabrication. CS MANTECH Conf. Boston (MA, USA), 2012. Pp. 215—217.
14. Okamoto N. Differential etching behavior between semi− insulating and n−doped 4H−SiC in high−density SF6/O2 inductively coupled plasma. J. Vacuum Science & Technology A. 2009, vol. 27, pp. 456—460. DOI: 10.1116/1.3100215.
15. Okamoto N., Ohki T., Masuda S., Kanamura M., Inoue Yu., Makiyama K., Imanishi K., Shigematsu H., Kikkawa T., Joshin K., Hara N. SiC Backside via−hole process for GaN HEMT MMICs using high etch rate ICP etching. CS MANTECH Conf. Tampa (FL, USA), 2009. Vol. 1.
16. Okamoto N., Imanishi K., Kikkawa T., Nara N. Influence of negative charging on high rate SiC etching for GaN HEMT MMICs. Materials Science Forum. 2010, vol. 645–648, pp. 791—794. DOI: 10.4028/www.scientific.net/MSF.645−648.791
17. Okamoto N., Imanishi K., Kikkawa T., Nara N. Backside process considerations for fabricating millimeter−wave GaN HEMT MMICs. CS MANTECH Conf. Portland (OR, USA), 2010. P. 257.
18. Stieglauer H., Noesser J., Bödege G., Drüeke K., Blanck H., Behammer D. Evaluation of through wafer via holes in SiC substrates for GaN HEMT technology. CS MANTECH Conf. Boston (MA, USA), 2012.
19. Barker A., Riddell K., Ashraf H., Thomas D., Chen C.−H., Wei Y.−F., Cho I.−T., Wohlmuth W. Advances in Back−side Via Etching of SiC for GaN Device Applications. CS MANTECH Conf. New Orleans (LA, USA), 2013. Pp. 47—50.
20. Ekinci H., Kuryatkov V. V., Mauch D. L., Dickens J. C., Nikishin S. A. Plasma etching of n−type 4H−SiC for photoconductive semiconductor switch applications. J. Electronic Materials. 2015, vol. 4, pp. 1300—1305. DOI: 10.1007/s11664−015−3658−z.
Review
For citations:
Seidman L.A. FORMATION OF THREE−DIMENSIONAL STRUCTURES IN SILICON CARBIDE SUBSTRATES BY PLASMOCHEMISTRY ETCHING. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(3):157-171. (In Russ.) https://doi.org/10.17073/1609-3577-2015-3-157-171