Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

DIAGNOSTICS OF TECHNOLOGICAL CHARACTERISTICS OF HIGH–POWER TRANSISTORS USING RELAXING IMPEDANCE SPECTROMETRY OF THERMAL PROCESSES

https://doi.org/10.17073/1609-3577-2014-1-47-52

Abstract

The efficient method of determining thermal parameters in high-power field-effect transistors has been developed and tested based on a study of transient processes during self heating by direct current. With the developed relaxation spectrometer of thermal processes differential distribution profiles of thermal resistance of KP723G transistors have been investigated which were selected in accordance with the regimes of setting of their crystals. Thermal resistance spectra have been obtained from the analysis of time−dependent dynamic thermal impedance using a new non−destructive method of differential spectroscopy using higher order derivatives (order 3). We present both continuous (integral) and discrete spectra of the distribution of internal thermal resistance in the transistors and the value of the junction/case thermal resistance. Thermal characteristics of the KP723G transistors and their imported counterparts IRLZ44 and IRLB3036 have been determined. The method of determining the active area of devices has been developed and its decrease during heating has been shown. The proposed methodology is useful in solving technological problems of forming the setting layers of crystals and intermediate layers between a crystal and a heat sink and also for the development of thermal models in SPICE modeling of powerful MOSFETs and diode emitters.

About the Authors

O. S. Vaskou
Belarusian State University, 220030, Belarus, Minsk, Nezavisimosti ave., 4
Belarus


V. S. Niss
Belarusian State University, 220030, Belarus, Minsk, Nezavisimosti ave., 4
Belarus
Сandidate of Physics and Mathematics;


V. K. Kononenko
Belarusian State University, 220030, Belarus, Minsk, Nezavisimosti ave., 4
Belarus
Doctor of Physics and Mathematics


A. S. Turtsevich
JSC «INTEGRAL» – Holding Management Company, 220108, Belarus, Minsk, Kazintsa I. P. Str., 121A
Belarus
Doctor of Technical Sciences


I. I. Rubtsevich
JSC «INTEGRAL» – Holding Management Company, 220108, Belarus, Minsk, Kazintsa I. P. Str., 121A
Belarus
Сandidate of Technical Sciences;


Y. A. Solov’ev
JSC «INTEGRAL» – Holding Management Company, 220108, Belarus, Minsk, Kazintsa I. P. Str., 121A
Belarus
Сandidate of Technical Sciences;


A. F. Kerentsev
JSC «INTEGRAL» – Holding Management Company, 220108, Belarus, Minsk, Kazintsa I. P. Str., 121A
Belarus


References

1. Bumai Yu. A., Vaskou A. S., Kononenko V. K. Measurement and analysis of thermal parameters and efficiency of laser heterostructures and light−emitting diodes. Metrology and Measurement Systems. 2010, vol. 7, no. 1, pp. 39—46.

2. Vas’kov O. S., Kononenko V. K., Niss V. S. Method of thermal relaxation spectrometry and determination of parameters of light-emitting diodes. Dokl. BGUIR. 2011, no. 4, pp. 74—79.

3. Masana F. N.A new approach to the dynamic thermal modeling of semiconductor packages. Microelectron. Reliability. 2001, vol. 41, no. 6, pp. 901—912.

4. Farkas G., van Vader Q. V., Poppe A., Bognar G. Thermal investigation of high power optical devices by transient testing. IEEE Trans. Components and Packaging Technol. 2005, vol. 28, no. 1, pp. 45—50.

5. Karslou G., Eger D. Conduction of heat in solids. Moscow: Nauka, 1964. 488 p.

6. Bagnoli P. E., Casora C., Dallago E., Nardoni M. Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization (Pt. 1 and 2) . IEEE Trans. Power Electron. 1998, vol. 13, no. 6, pp. 1208—1228.

7. Glavanovics M., Zitta H. Thermal destruction testing: an indirect approach to a simple dynamic thermal model of smart power switches. Proc. ESSIRC. 2001, pp. 236—239.

8. Pape H., Schweitzer D., Chen L., Kutscherauer R., Walder M. Development of a standard for transient measurement of junction-to-case thermal resistance. Microelectron. Reliability. 2012, vol. 52, no. 7, pp. 1272—1278.

9. Kerentsev A. F., Lanin V. L. Constructive and technological features of MOSFET transistors. Komponenty i tehnologii. 2007, no. 4, pp. 100—104.

10. Bumai Yu. A., Vas’kov O. S., Kononenko V. K., Lomako V. M. Relaxation impedance spectrometer of thermal processes. Elektronika info. 2010, no. 3, pp. 58—59.

11. Vas’kov O. S., Niss V. S., Kononenko V. K., Turtsevich A. S., Rubtsevich I. I., Solov’ev Ya. A., Kerentsev A. F. Diagnostics of technical characteristics on powerful transistors by means of relaxation an impedance spectrometer of thermal processes. Kniga tez. IX Mezhdunar. konf. «Kremnii−2012». SPb., 2012. pp. 152—153.

12. Turtsevich A. S., Vas’kov O. S., Rubtsevich I. I., Solov’ev Ya. A., Vas’kov O. S., Kononenko V. K., Niss V. S., Kerentsev A. F. Research of quality of the soldering of crystals of powerful transistors relaxation impedance spectrometer. TKEA. 2012, no. 5, pp. 44—47.

13. Huang, W., Ghosh S., Velusamy S., Sankaranarayanan K., Skadron K., Stan M. R. HotSpot: A compact thermal modeling methodology for early−stage VLSI design. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2006, vol. 14, no. 5, pp. 501—513.

14. Wang X., Ezzahri Y., Christofferson J., Shakouri A. Bias-dependent MOS transistor thermal resistance and non-uniform self−heating temperature. J. Phys. D: Appl. Phys. 2009, vol. 42, no. 7, pp. 075101-1—5.


Review

For citations:


Vaskou O.S., Niss V.S., Kononenko V.K., Turtsevich A.S., Rubtsevich I.I., Solov’ev Y.A., Kerentsev A.F. DIAGNOSTICS OF TECHNOLOGICAL CHARACTERISTICS OF HIGH–POWER TRANSISTORS USING RELAXING IMPEDANCE SPECTROMETRY OF THERMAL PROCESSES. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2014;(1):47-52. (In Russ.) https://doi.org/10.17073/1609-3577-2014-1-47-52

Views: 826


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)