Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

INFLUENCE OF YTTRIA DOPANT ON THE STRUCTURE AND PROPERTIES of (ZrO₂)0,91−x(Sc₂O₃)0,09(Y₂O₃)х (x = 0÷0,02) crystals

https://doi.org/10.17073/1609-3577-2015-4-246-254

Abstract

We have studied the influence of dopant Y2O3 oxide (1 and 2 mol.%) on the phase composition, structure and electrical properties of the ZrO2 — 9 mol.% Sc2O3 solid solution. We have shown that stabilization of ZrO2 jointly with 9 mol.% Sc2O3 and 2 mol.% Y2O3 allows one to obtain transparent homogeneous crystals with a cubic structure which have a high phase stability. Mechanical grinding of these crystals did not lead to a change in the phase composition of the powders. The powders inherited the original structure of the fluorite crystals. All the test crystals had high microhardness and low fracture toughness. Increasing the concentration of Y2O3 in crystals led to the need to reduce maximum loads on the indenter that the sample could withstand without cracking. We have shown that the conductivity varies nonmonotonically with increasing Y2O3 concentration in the crystals. An increase in the Y2O3 content to 2 mol. % in the composition of the solid electrolyte reduces the conductivity of the crystals in entire temperature range which is caused with a decrease in carrier mobility due to increasing ion radius of the stabilizing ion.

About the Authors

D. A. Agarkov
Institute of Solid State Physics RAS
Russian Federation

Dmitry A. Agarkov — Junior Researcher

2 Academician Ossipyan Str., Chernogolovka, Moscow District 142432



M. A. Borik
Prokhorov General Physics Institute RAS
Russian Federation

Mikhail A. Borik — Cand. Sci. (Eng.), Senior Researcher 

38 Vavilov Str., Moscow 119991



S. I. Bredihin
Institute of Solid State Physics RAS
Russian Federation

Sergey I. Bredihin — Dr. Sci. (Phys.−Math.), Deputy Director, Head of Laboratory 

2 Academician Ossipyan Str., Chernogolovka, Moscow District 142432



V. T. Bublik
National University of Science and Technology «MISIS»,
Russian Federation

Vladimir T. Bublik — Dr. Sci. (Phys.−Math.), Professor 

4 Leninsky Prospekt, Moscow 119049



L. D. Iskhakova
Prokhorov General Physics Institute RAS; Fiber Optics Research Center RAS
Russian Federation

Ludmila D. Iskhakova — Cand. Sci. (Chem.), Head of the Analytical Center 

38 Vavilov Str., Moscow 119991



A. V. Kulebyakin
Prokhorov General Physics Institute RAS
Russian Federation

Aleksej V. Kulebyakin — Cand. Sci. (Eng.), Senior Researcher

38 Vavilov Str., Moscow 119991



I. E. Kuritsyna
Institute of Solid State Physics RAS
Russian Federation

Irina E. Kuritsyna — Junior Researcher 

2 Academician Ossipyan Str., Chernogolovka, Moscow District 142432



E. E. Lomonova
Prokhorov General Physics Institute RAS
Russian Federation

Elena E. Lomonova — Dr. Sci. (Eng.), Head of Laboratory 

38 Vavilov Str., Moscow 119991



F. O. Milovich
National University of Science and Technology «MISIS»
Russian Federation

Filipp O. Milovich — Engineer 

4 Leninsky Prospekt, Moscow 119049



V. А. Myzina
Prokhorov General Physics Institute RAS
Russian Federation

Valentina A. Myzina — Researcher 

38 Vavilov Str., Moscow 119991



S. V. Seryakov
Prokhorov General Physics Institute RAS; National University of Science and Technology «MISIS»
Russian Federation

Sergei V. Seryakov— Junior Researcher , Postgraduate Student of MISIS 

38 Vavilov Str., Moscow 119991



N. Yu. Tabachkova
National University of Science and Technology «MISIS»
Russian Federation

Nataliya Yu. Tabachkova — Cand. Sci. (Phys.−Math.), Assoc. Prof. 

4 Leninsky Prospekt, Moscow 119049



References

1. Badwal S. P. S., Ciacchi F. T., Milosevic D. Scandia−zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ionics, 2000, vol. 136–137, pp. 91—99. DOI: 10.1016/S0167-2738(00)00356-8

2. Kharton V. V., Marques F. M. B., Atkinson A. Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics, 2004, vol. 174, no. 1–4, pp. 135—149. DOI: 10.1016/j. ssi.2004.06.015

3. Fergus J. W. Electrolytes for solid oxide fuel cells. J. Power Sources, 2006, vol. 162, no. 1, pp. 30—40. DOI: 10.1016/j.jpowsour. 2006.06.062

4. Yokokawa H., Sakai N., Horita T., Yamaji K., Brito M. E. Solid oxide electrolytes for high temperature fuel cells. Electrochemistry, 2005, vol. 73, no. 1, pp. 20—30.

5. Politova T. I., Irvine J. T. S. Investigation of scandia−yttria− zirconia system as an electrolyte material for intermediate temperature fuel cells—influence of yttria content in system (Y2O3)x (Sc2O3)(11−x)(ZrO2)89. Solid State Ionics, 2004, vol. 168, no. 1–2, pp. 153—165. DOI: 10.1016/j.ssi.2004.02.007

6. Wakako A., Hanashiro D., Arai Y., Malzbender J. Fracture mechanism of scandia−doped zirconia. Acta Materialia, 2013, vol. 61, no. 8, pp. 3082—3089. DOI: 10.1016/j.actamat.2013.01.068

7. Fujimori H., Yashima M., Kakihana M., Yoshimura M. Structural changes of scandia−doped zirconia solid solutions: rietveld analysis and saman scattering. J. Amer. Ceram. Soc., 1998, vol. 81, no. 11, pp. 2285—2293. DOI: 10.1111/j.1151-2916.1998.tb02710.x

8. Simoncic P., Navrotsky A. Systematics of phase transition and mixing energetics in rare earth. J. Amer. Ceram. Soc., 2007, vol. 90, no. 7, pp. 2143—2150. DOI: 10.1111/j.1551−2916.2007.01678.x

9. Spirin A., Ivanov V., Nikonov A., Lipilin A., Paranin S., Khrustov V., Spirina A. Scandia−stabilized zirconia doped with yttria: Synthesis, properties, and ageing behavior. Solid State Ionics, 2012, vol. 225, pp. 448—452. DOI: 10.1016/j.ssi.2012.02.022

10. Tataryn T., Savytskii D., Paulmann C., Bismayer U. Twin structure of the ZrO2−Sc2O3 crystal. Crystal Radiation Physics and Chemistry, 2009, vol. 78, no. 10, pp. 101—104. DOI: 10.1016/j.radphyschem. 2009.03.088

11. Shobit O., Najib W. B., Chen W., Bonanos N. Electrical conductivity of 10 mol% Sc2O3–1 mol% M2O3–ZrO2 ceramics. J. Amer. Ceram. Soc., 2012, vol. 95, no. 6, pp. 1965—1972. DOI: 10.1111/j.15512916.2012.05126.x

12. Agarkov D. A., Burmistrov I. N., Tsybrov F. M., Tartakovskii I. I., Kharton V .V., Bredikhin S. I., Kveder V. V. Analysis of interfacial processes at the SOFC electrodes by in−situ Raman spectroscopy. ECST, 2015, vol. 68, no. 1, pp. 2093—2103. DOI: 10.1149/06801.2093ecst

13. Yashima M., Kakihana M., Yoshimura M. Metastable−stable phase diagrams in the zirconia−containing systems utilized in solid− oxide fuel cell application. Solid State Ionics, 1996, vol. 86–88, pt 2, pp. 1131—1149. DOI: 10.1016/0167-2738(96)00386-4

14. Chiba R., Yoshimura F., Yamaki J., Ishii T., Yonezawa T., Endou K. Ionic conductivity and morphology in Sc2O3 and Al2O3 doped ZrO2 films prepared by the sol−gel method. Solid State Ionics, 1997, vol. 104, no. 3–4, pp. 259—266. DOI: 10.1016/S0167-2738(97)00423-2

15. Sheu T.−S., Xu J., Tien T.−Y. Phase relationships in the ZrO2—Sc2O3 and ZrO2—In2O3 systems. J. Amer. Ceram. Soc., 1993, vol. 76, no. 8, pp. 2027—2032. DOI: 10.1111/j.1151-2916.1993. tb08328.x

16. Kuzminov Yu. S., Lomonova E. E., Osiko V. V. Tugoplavkie materialy iz kholodnogo tiglya [Refractory materials from a cold crucible]. Moscow: Nauka, 2004. 372 p.

17. Borik M. A., Bublik V. T., Kulebyakin A. V., Lomonova E. E., Milovich F. O., Myzina V. A., Osiko V. V., Tabachkova N. Y. Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content. J. Alloys and Compounds, 2014, vol. 586, pp. 231—235. DOI: 10.1016/j.jallcom.2013.01.126

18. Andrievskaya E. R. Fazovye ravnovesiya v sistemakh oksidov gafniya, tsirkoniya, ittriya s oksidami redkozemel'nykh elementov [Phase equilibria in systems of hafnium, zirconium, yttrium oxides with oxides of rare−earth elements]. Kiev: Naukova dumka, 2010. 472 p.

19. Fujimori H., Yashima M., Kakihana M., Yoshimura M. −cubic phase transition of scandia−doped zirconia solid solution: Calorimetry, X−ray diffraction, and Raman scattering. J. Appl. Phys., 2002, vol. 91, no. 10, pp. 6493—6498. DOI: 10.1063/1.1471576

20. Arachi Y., Sakai H., Yamamoto O., Takeda Y., Imanishai N. Electrical conductivity of the ZrO — Ln2O3 (Ln = lanthanides) system. Solid State Ionics, 1999, vol. 121, no. 1–4, pp. 133—139. DOI: 10.1016/ S0167-2738(98)00540-2


Review

For citations:


Agarkov D.A., Borik M.A., Bredihin S.I., Bublik V.T., Iskhakova L.D., Kulebyakin A.V., Kuritsyna I.E., Lomonova E.E., Milovich F.O., Myzina V.А., Seryakov S.V., Tabachkova N.Yu. INFLUENCE OF YTTRIA DOPANT ON THE STRUCTURE AND PROPERTIES of (ZrO₂)0,91−x(Sc₂O₃)0,09(Y₂O₃)х (x = 0÷0,02) crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(4):246-254. (In Russ.) https://doi.org/10.17073/1609-3577-2015-4-246-254

Views: 1154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)