INFLUENCE OF YTTRIA DOPANT ON THE STRUCTURE AND PROPERTIES of (ZrO₂)0,91−x(Sc₂O₃)0,09(Y₂O₃)х (x = 0÷0,02) crystals
https://doi.org/10.17073/1609-3577-2015-4-246-254
Abstract
We have studied the influence of dopant Y2O3 oxide (1 and 2 mol.%) on the phase composition, structure and electrical properties of the ZrO2 — 9 mol.% Sc2O3 solid solution. We have shown that stabilization of ZrO2 jointly with 9 mol.% Sc2O3 and 2 mol.% Y2O3 allows one to obtain transparent homogeneous crystals with a cubic structure which have a high phase stability. Mechanical grinding of these crystals did not lead to a change in the phase composition of the powders. The powders inherited the original structure of the fluorite crystals. All the test crystals had high microhardness and low fracture toughness. Increasing the concentration of Y2O3 in crystals led to the need to reduce maximum loads on the indenter that the sample could withstand without cracking. We have shown that the conductivity varies nonmonotonically with increasing Y2O3 concentration in the crystals. An increase in the Y2O3 content to 2 mol. % in the composition of the solid electrolyte reduces the conductivity of the crystals in entire temperature range which is caused with a decrease in carrier mobility due to increasing ion radius of the stabilizing ion.
Keywords
About the Authors
D. A. AgarkovRussian Federation
Dmitry A. Agarkov — Junior Researcher
2 Academician Ossipyan Str., Chernogolovka, Moscow District 142432
M. A. Borik
Russian Federation
Mikhail A. Borik — Cand. Sci. (Eng.), Senior Researcher
38 Vavilov Str., Moscow 119991
S. I. Bredihin
Russian Federation
Sergey I. Bredihin — Dr. Sci. (Phys.−Math.), Deputy Director, Head of Laboratory
2 Academician Ossipyan Str., Chernogolovka, Moscow District 142432
V. T. Bublik
Russian Federation
Vladimir T. Bublik — Dr. Sci. (Phys.−Math.), Professor
4 Leninsky Prospekt, Moscow 119049
L. D. Iskhakova
Russian Federation
Ludmila D. Iskhakova — Cand. Sci. (Chem.), Head of the Analytical Center
38 Vavilov Str., Moscow 119991
A. V. Kulebyakin
Russian Federation
Aleksej V. Kulebyakin — Cand. Sci. (Eng.), Senior Researcher
38 Vavilov Str., Moscow 119991
I. E. Kuritsyna
Russian Federation
Irina E. Kuritsyna — Junior Researcher
2 Academician Ossipyan Str., Chernogolovka, Moscow District 142432
E. E. Lomonova
Russian Federation
Elena E. Lomonova — Dr. Sci. (Eng.), Head of Laboratory
38 Vavilov Str., Moscow 119991
F. O. Milovich
Russian Federation
Filipp O. Milovich — Engineer
4 Leninsky Prospekt, Moscow 119049
V. А. Myzina
Russian Federation
Valentina A. Myzina — Researcher
38 Vavilov Str., Moscow 119991
S. V. Seryakov
Russian Federation
Sergei V. Seryakov— Junior Researcher , Postgraduate Student of MISIS
38 Vavilov Str., Moscow 119991
N. Yu. Tabachkova
Russian Federation
Nataliya Yu. Tabachkova — Cand. Sci. (Phys.−Math.), Assoc. Prof.
4 Leninsky Prospekt, Moscow 119049
References
1. Badwal S. P. S., Ciacchi F. T., Milosevic D. Scandia−zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ionics, 2000, vol. 136–137, pp. 91—99. DOI: 10.1016/S0167-2738(00)00356-8
2. Kharton V. V., Marques F. M. B., Atkinson A. Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics, 2004, vol. 174, no. 1–4, pp. 135—149. DOI: 10.1016/j. ssi.2004.06.015
3. Fergus J. W. Electrolytes for solid oxide fuel cells. J. Power Sources, 2006, vol. 162, no. 1, pp. 30—40. DOI: 10.1016/j.jpowsour. 2006.06.062
4. Yokokawa H., Sakai N., Horita T., Yamaji K., Brito M. E. Solid oxide electrolytes for high temperature fuel cells. Electrochemistry, 2005, vol. 73, no. 1, pp. 20—30.
5. Politova T. I., Irvine J. T. S. Investigation of scandia−yttria− zirconia system as an electrolyte material for intermediate temperature fuel cells—influence of yttria content in system (Y2O3)x (Sc2O3)(11−x)(ZrO2)89. Solid State Ionics, 2004, vol. 168, no. 1–2, pp. 153—165. DOI: 10.1016/j.ssi.2004.02.007
6. Wakako A., Hanashiro D., Arai Y., Malzbender J. Fracture mechanism of scandia−doped zirconia. Acta Materialia, 2013, vol. 61, no. 8, pp. 3082—3089. DOI: 10.1016/j.actamat.2013.01.068
7. Fujimori H., Yashima M., Kakihana M., Yoshimura M. Structural changes of scandia−doped zirconia solid solutions: rietveld analysis and saman scattering. J. Amer. Ceram. Soc., 1998, vol. 81, no. 11, pp. 2285—2293. DOI: 10.1111/j.1151-2916.1998.tb02710.x
8. Simoncic P., Navrotsky A. Systematics of phase transition and mixing energetics in rare earth. J. Amer. Ceram. Soc., 2007, vol. 90, no. 7, pp. 2143—2150. DOI: 10.1111/j.1551−2916.2007.01678.x
9. Spirin A., Ivanov V., Nikonov A., Lipilin A., Paranin S., Khrustov V., Spirina A. Scandia−stabilized zirconia doped with yttria: Synthesis, properties, and ageing behavior. Solid State Ionics, 2012, vol. 225, pp. 448—452. DOI: 10.1016/j.ssi.2012.02.022
10. Tataryn T., Savytskii D., Paulmann C., Bismayer U. Twin structure of the ZrO2−Sc2O3 crystal. Crystal Radiation Physics and Chemistry, 2009, vol. 78, no. 10, pp. 101—104. DOI: 10.1016/j.radphyschem. 2009.03.088
11. Shobit O., Najib W. B., Chen W., Bonanos N. Electrical conductivity of 10 mol% Sc2O3–1 mol% M2O3–ZrO2 ceramics. J. Amer. Ceram. Soc., 2012, vol. 95, no. 6, pp. 1965—1972. DOI: 10.1111/j.15512916.2012.05126.x
12. Agarkov D. A., Burmistrov I. N., Tsybrov F. M., Tartakovskii I. I., Kharton V .V., Bredikhin S. I., Kveder V. V. Analysis of interfacial processes at the SOFC electrodes by in−situ Raman spectroscopy. ECST, 2015, vol. 68, no. 1, pp. 2093—2103. DOI: 10.1149/06801.2093ecst
13. Yashima M., Kakihana M., Yoshimura M. Metastable−stable phase diagrams in the zirconia−containing systems utilized in solid− oxide fuel cell application. Solid State Ionics, 1996, vol. 86–88, pt 2, pp. 1131—1149. DOI: 10.1016/0167-2738(96)00386-4
14. Chiba R., Yoshimura F., Yamaki J., Ishii T., Yonezawa T., Endou K. Ionic conductivity and morphology in Sc2O3 and Al2O3 doped ZrO2 films prepared by the sol−gel method. Solid State Ionics, 1997, vol. 104, no. 3–4, pp. 259—266. DOI: 10.1016/S0167-2738(97)00423-2
15. Sheu T.−S., Xu J., Tien T.−Y. Phase relationships in the ZrO2—Sc2O3 and ZrO2—In2O3 systems. J. Amer. Ceram. Soc., 1993, vol. 76, no. 8, pp. 2027—2032. DOI: 10.1111/j.1151-2916.1993. tb08328.x
16. Kuzminov Yu. S., Lomonova E. E., Osiko V. V. Tugoplavkie materialy iz kholodnogo tiglya [Refractory materials from a cold crucible]. Moscow: Nauka, 2004. 372 p.
17. Borik M. A., Bublik V. T., Kulebyakin A. V., Lomonova E. E., Milovich F. O., Myzina V. A., Osiko V. V., Tabachkova N. Y. Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content. J. Alloys and Compounds, 2014, vol. 586, pp. 231—235. DOI: 10.1016/j.jallcom.2013.01.126
18. Andrievskaya E. R. Fazovye ravnovesiya v sistemakh oksidov gafniya, tsirkoniya, ittriya s oksidami redkozemel'nykh elementov [Phase equilibria in systems of hafnium, zirconium, yttrium oxides with oxides of rare−earth elements]. Kiev: Naukova dumka, 2010. 472 p.
19. Fujimori H., Yashima M., Kakihana M., Yoshimura M. −cubic phase transition of scandia−doped zirconia solid solution: Calorimetry, X−ray diffraction, and Raman scattering. J. Appl. Phys., 2002, vol. 91, no. 10, pp. 6493—6498. DOI: 10.1063/1.1471576
20. Arachi Y., Sakai H., Yamamoto O., Takeda Y., Imanishai N. Electrical conductivity of the ZrO — Ln2O3 (Ln = lanthanides) system. Solid State Ionics, 1999, vol. 121, no. 1–4, pp. 133—139. DOI: 10.1016/ S0167-2738(98)00540-2
Review
For citations:
Agarkov D.A., Borik M.A., Bredihin S.I., Bublik V.T., Iskhakova L.D., Kulebyakin A.V., Kuritsyna I.E., Lomonova E.E., Milovich F.O., Myzina V.А., Seryakov S.V., Tabachkova N.Yu. INFLUENCE OF YTTRIA DOPANT ON THE STRUCTURE AND PROPERTIES of (ZrO₂)0,91−x(Sc₂O₃)0,09(Y₂O₃)х (x = 0÷0,02) crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(4):246-254. (In Russ.) https://doi.org/10.17073/1609-3577-2015-4-246-254