MOLECULAR DYNAMIC MODELING OF THE INITIAL STAGES OF Si(111) SURFACE NITRIDIZATION IN NH₃ ATMOSPHERE
https://doi.org/10.17073/1609-3577-2015-4-267-272
Abstract
Molecular dynamic modeling of the deposition of a single ammonium molecule on the (111) surface of silicon has been carried out. We have used the process of parametric identification of interatomic interaction potentials for the atomic system being described. We have developed software for the molecular dynamic calculations that allows optimizing the geometry of the structures being considered and visualizing the results. To verify the results of molecular dynamic modeling we have carried out quantum mechanical calculations on a supercomputer. We have obtained the interatomic interaction potentials that allow deriving potentials suitable for further calculations during the modeling of the adsorption of an ammonium molecule on silicon surface. For example, they provide for a correct reproduction of the results of first−principle modeling of the interaction between an adsorbed nitrogen atom and silicon surface and the energy parameters of adsorption. Using the Tersoff potential with the parameters obtained as a result of parametric identification we modeled the position providing for the lowest total energy. This position is the most energetically favorable for an adsorbed atom.
Keywords
About the Authors
K. K. AbgaryanRussian Federation
Karine K. Abgaryan1 — Сand. Sci. (Phys.− Math.), Head of the Department
40 Vavilov Str., Moscow 119333
Yu. G. Evtushenko
Russian Federation
Yuri G. Evtushenko1 — Director
40 Vavilov Str., Moscow 119333
I. V. Mutigullin
Russian Federation
Ilya V. Mutigullin1 — Сand. Sci. (Phys.−Math.), Senior Researcher
40 Vavilov Str., Moscow 119333
S. I. Uvarov
Russian Federation
Sergey I. Uvarov1 — Junior Research
40 Vavilov Str., Moscow 119333
References
1. Abgaryan K. K., Bazanov D. I., Mutigillin I. V. The simulation of the nitridation of the sapphire surface (001). Mater. XXI Internat. Conf. «Interaction of ions with the surface» (ISI−2013). Yaroslavl, 2013, vol. 2, pp. 99—103.
2. Abgaryan K. K., Bazanov D. I., Mutigillin I. V. Investigation of atomic nitrogen adsorption on Al2O3 (0001). J. Surface Investigation: X–Ray, Synchrotron and Neutron Techniques. 2013, no. 1, pp. 80—84. (In Russ.). DOI: 10.7868/S0207352813010022
3. Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964, vol. 136, pp. B864. DOI: 10.1103/PhysRev.136.B864
4. Kohn W., Sham L. J. Self−consistent equations including exchange and correlation effects. Phys. Rev. 1965, vol. 140, pp. A1133— A1138. DOI: 10.1103/PhysRev.140.A1133
5. Mansurov V. G., Galitsyn Yu. G., Malines T. V., Zhuravlev K. S. Formation of the ordered phase (8х8) SiN and the amorphous phase Si3N4 on a surface (111) Si in a stream ammonia. Tezisy dokladov XII Rossiiskoi konferentsii po fizike poluprovodnikov = Abstracts of the XII Russian Conference on Semiconductor Physics. Moscow: Fizicheskii institut im. P. N. Lebedeva RAN, 2015. P. 456. (In Russ.)
6. Wang X.−S., Zhai G., Yang J.−S., Wang L., Hu Y., Li Z., Tang J. C., Fung K. K., Cue N. Nitridation of Si(111). Surf. Sci. 2001, vol. 494, no. 2, pp. 83—94. DOI: 10.1016/S0039-6028(01)01409-1
7. Abgaryan K. K., Posypkin M. A. Optimization methods as applied to parametric identification of interatomic potentials. Computational Mathematics and Mathematical Physics. 2014, vol. 54, no. 12, pp. 1994—2001. (In Russ.)
8. Abgaryan K. K., Volodina O. V., Uvarov S. I. Mathematical modeling of point defect cluster formation in silicon based on molecular dynamic approach. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015, vol. 18, no. 1, pp. 37—42. (In Russ.). DOI: 10.17073/1609-35772015-1-37-42
9. Evtushenko Yu. G., Malkova V. U., Stanevichyus A. A. Parallel global optimization of functions of several variables. Computational Mathematics and Mathematical Physics. 2009, vol. 49, no. 2, pp. 246—260. DOI: 10.1134/S0965542509020055
10. Tersoff J. Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B. 1988, vol. 38, no. 14, pp. 9902—9905. DOI: 10.1103/PhysRevB.38.9902
11. VASP. http://cms.mpi.univie.ac.at/vasp/
12. Evtushenko Yu. G. Optimizatsiya i bystroe avtomaticheskoe differentsirovanie [Optimization and FAD−Methodology]. Preprint, Dorodnicyn Computing Centre of the Russian Academy of Sciences, 2013. 144 p. (In Russ.)
13. Panteleev A. V., Letova T. A. Optimization methods in examples and tasks. Moscow: Heigh school, 2005. 544 p
14. Powell D. Elasticity, lattice dynamics and parameterisation techniques for the Tersoff potential applied to elemental and type III−V semiconductors: Ph.D. thesis. University of Sheffield, 2006.
15. Zaliznyak V. E. Osnovy vychislitel’noi fiziki. Ch. 2. Vvedenie v metod chastits [Fundamentals of Computational Physics. Pt. 2. Introduction to the particle method]. Мoscow; Izhevsk: NITs «Regulyarnaya i khaoticheskaya dinamika»; Institut komp’yuternykh issledovanii, 2006, pp. 26—45. (In Russ.)
16. Krivtsov A. M., Krivtsova N. V. Method of particles and its application to mechanics of solids. Dal’nevostochnyi Matematicheskii Zhurnal DVO RAN. 2002, vol. 3, no. 2, pp. 254—276. (In Russ.)
Review
For citations:
Abgaryan K.K., Evtushenko Yu.G., Mutigullin I.V., Uvarov S.I. MOLECULAR DYNAMIC MODELING OF THE INITIAL STAGES OF Si(111) SURFACE NITRIDIZATION IN NH₃ ATMOSPHERE. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(4):267-272. (In Russ.) https://doi.org/10.17073/1609-3577-2015-4-267-272