Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Nanoscale characterization of Cr, Cu, Al and Ni metallic magnetron nanofilm multilayers on sitall

https://doi.org/10.17073/1609-3577-2016-3-195-203

Abstract

Results of nanoscale study (by atomic force microscopy and X−ray diffraction) of single−, two− and three−layered Cr, Cu, Al and Ni metallic nanofilms formed on a ceramic sital substrate on MVU TM−Magna T magnetron equipment (NIITM, Zelenograd) have been reported. The growth rates and the structure of the nanofilms were determined while varying of power/current ratio from 200/0.7 to 800/2 Wt/A and magnetron sputtering time from 30 to 360s at an operating pressure of 0.5 Pa Ar. The criterion for optimization quality based on the minimum roughness was as follows: Ra = min{Rai} and/or Rq → min{Rqi} (i is the number of varies modes used). The mean roughness Ra and RRMS = Rq have been determined from the scan of the vertical profile (resolution 20 pm) of the atomic force microscopic image. We found that the nanofilm–forming nanocluster structure size for the modes when Ra and Rq were the smallest had a close–to–Gaussian grain size distribution. The film growth rates have been determined based on the atomic force images of the nanofilm structure in the form of either a single step or steps obtained at different time intervals. The mode and parameters of magnetron sputtering and the composition of the Cr, Cu, Al and Ni targets affect the size of clusters which form the surface of the metallic nanofilms. X−ray phase and structural analyses have been carried out in order to determine the texture and the change in the distances between the lattice planes. The correctness of the optimization criterion correlating the nanolayer deposition parameters and their quality has been corroborated by the coincidence of the magnetron sputtering modes which provided for the lowest roughness and the smallest average size of the X−ray coherence region as using the Debye− Scherrer equation.

About the Authors

A. P. Kuzmenko
Southwest State University.
Russian Federation
Alexander P. Kuzmenko — Dr. Sci. (Phys.−Math.), Professor of Department of Engineering Physics and Nanotechnology. 94 50 let Oktyabrya Str., Kursk 305040.


Naw Dint
Southwest State University.
Russian Federation

Naw Dint — Postgraduated Student. 

94 50 let Oktyabrya Str., Kursk 305040.



A. E. Kuzko
Southwest State University.
Russian Federation

Andrey E. Kuzko — Cand. Sci. (Phys.−Math.), Associate Professor, Chief Department of Engineering Physics and Nanotechnology. 

94 50 let Oktyabrya Str., Kursk 305040.



Myo Min Than
Southwest State University.
Russian Federation

 Myo Min Than — Researcher. 

94 50 let Oktyabrya Str., Kursk 305040.



Thant Sin Win
Southwest State University.
Russian Federation

Thant Sin Win — Master Student. 

94 50 let Oktyabrya Str., Kursk 305040.



A. I. Kolpakov
Southwest State University.
Russian Federation

Artem I. Kolpakov1 — Student. 

94 50 let Oktyabrya Str., Kursk 305040.



References

1. Rogov A. V., Kapustin Y. V., Martynenko Y. V. Factors determining the efficiency of magnetron sputtering. Optimization criteria. Technical Physics. The Russian Journal of Applied Physics, 2015, vol. 60, no. 2, pp. 283—291. DOI: 10.1134/S1063784215020206

2. Kashtanov P. V., Smirnov B. M., Hippler R. Magnetron plasma and nanotechnology. Phys. Usp., 2007, vol. 50, no. 5, pp. 455—488. DOI: 10.1070/PU2007v050n05ABEH006138

3. Smirnov B. M., Shyjumon I., Hippler R. Formation of clusters through generation of free atoms. Phys. Scr., 2006, vol. 73, no. 3, pp. 288—295. DOI: 10.1088/0031−8949/73/3/009

4. Manova D., Gerlach J. W., Mändl S. Thin film deposition using energetic ions. Materials. 2010, vol. 3, no. 8, pp. 4109—4141. DOI: 10.3390/ma3084109

5. Kukushkin S. A., Osipov A. V. Thin−film condensation processes. Phys. Usp., 1998, vol. 41, no. 10, pp. 983—1014. DOI: 10.1070/PU1998v041n10ABEH000461

6. Ekpe S. D., Dew S. K. Theoretical and experimental determination of the energy flux during magnetron sputter deposition onto an unbiased substrate. J. Vac. Sci. Technol. A, 2003, vol. 21, no. 2, pp. 476—483. DOI: 10.1116/1.1554971

7. Xie L., Brault P., Bauchire J.−M., Thomann A.−L., Bedra L. Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition J. Phys. D: Appl. Phys., 2014, vol. 47, no. 22. pp. 1—36. DOI: 10.1088/0022−3727/47/22/224004

8. Aseev A. L. Nanotechnology in semiconductor electronics. Vestnik Rossiiskoi Akademii Nauk = Bulletin of the Russian Academy of Sciences, 2006, vol. 7, no. 76, pp. 603—611. (In Russ.)

9. Lin J.−P., Lin L.−M., Guan G.−Q., Wu Y.−W., Lai F.−Ch. Structural, optical and electrical properties of chromium thin films prepared by magnetron sputtering. Acta Photonica Sinica, 2012, vol. 41, no. 8, pp. 922—926. DOI: 10.3788/gzxb20124108.0922

10. Minh−Tung Le, Yong−Un Sohn, Jae−Won Lim, Good−Sun Choi. Effect of sputtering power on the nucleation and growth of Cu films deposited by magnetron sputtering. Materials Transactions, 2010, vol. 51, no. 1, pp. 116—120. DOI: 10.2320/matertrans.M2009183

11. Persson B. N. J. On the fractal dimension of rough surfaces. Tribol. Lett., 2014. vol. 54, no. 1, pp. 99—106. DOI: 10.1007/s11249014-0313-4

12. Muralidhar S. M., Vijaya G., Krupashankara M. S., Sridhara B. K., Shridhar T. N. Studies on nanostructure aluminium thin film coatings deposited using DC magnetron sputtering process. IOP Conf. Ser.: Mater. Sci. Eng., 2016. vol. 149, no. 1, pp. 012071. DOI: 10.1088/1757-899X/149/1/012071

13. Priyadarshini B. G., Aich S., Chakraborty M. Structural and morphological investigations on DC−magnetron−sputtered nickel films deposited on Si (100). J Mater Sci., 2011, vol. 46, no. 9, pp. 2860—2873. DOI: 10.1007/s10853−010−5160−6

14. Dzhumaliev A. S., Nikulin Y. V., Filimonov Y. A. Formation of textured Ni(200) and Ni(111) films by magnetron sputtering. Technical Physics, 2016, vol. 61, no. 6. pp. 924—928. DOI: 10.1134/S1063784216060141

15. Burgstaller W., Hafner M., Voith M., Mardare A. I., Hassel A. W. Copper−nickel oxide thin film library reactively co−sputtered from a metallic sectioned cathode. J. Mater. Res. 2014, vol. 29, no. 1, pp. 148—157. DOI: 10.1557/jmr.2013.336

16. Burinskas S., Dudonis J. Synthesis of Cu/Cr multilayer thin films deposited by unbalanced magnetron sputtering. Materials science, 2009, vol. 15, no. 3, pp. 220—223.

17. Bizhou Shen, Liping Peng, Xuemin Wang, Jianjun Wei, Weidong Wu. Morphology structure and electrical properties of NiCr thin film grown on the substrate of silicon prepared by magnetron sputtering. J. Wuhan Univ. of Technology−Mater. Sci. Ed., 2015, vol. 30, no. 2, pp. 380—385. DOI: 10.1007/s11595-015-1156-z.

18. Dzhumaliev A. S., Nikulin Y. V., Filimonov Y. A. Magnetron sputtering of thin Cu(200) films on Ni(200)/SiO2/Si substrate. Technical Physics, 2014, vol. 59, no. 7, pp. 1097—1100. DOI: 10.1134/S106378421407010X

19. Jing Xu, Guang Hui Min, Hua Shun Yu, Jing Li The influence of sputtering argon pressure on LaB6 films characetristics. Adv. Mater. Res., 2011, vol. 287–290, pp. 2244—2247. DOI: 10.4028/www. scientific.net/AMR.287-290.2244

20. Kuzmenko A. P. Naw Dint, Myo Min Than. Temperature changes in the structure of magnetron copper films on a substrate sital ceramic. Izvestiya Yugo−Zapadnogo gosudarstvennogo universiteta. Seriya tekhnika i tekhnologii = Proceedings of the Southwest State University. Technics and Technologies, 2015, vol. 16, no. 3, pp. 60—71. (In Russ.)

21. Kuzmenko А. P., Kuzko A. E., Naw Dint, Myo Min Than, Kanukov R. T. Degradation processes of Ni and Cr magnetron nanocoating under heating in air. Izvestiya Yugo−Zapadnogo gosudarstvennogo universiteta. Seriya tekhnika i tekhnologii = Proceedings of the Southwest State University. Technics and Technologies, 2016, vol. 19, no. 2, pp. 153—165. (In Russ.)

22. Liu Y. H., Fujita T., Hirata A., Li. S., Liu H. W. Zhang W, Inoue A., Chen M. W. Deposition of multicomponent metallic glass films by single−target magnetron sputtering. Intermetallies. 2012, vol. 21, no. 1, pp. 105 — 114. DOI: 10.1016/j.intermet.2011.10.007


Review

For citations:


Kuzmenko A.P., Dint N., Kuzko A.E., Min Than M., Sin Win T., Kolpakov A.I. Nanoscale characterization of Cr, Cu, Al and Ni metallic magnetron nanofilm multilayers on sitall. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(3):195-203. (In Russ.) https://doi.org/10.17073/1609-3577-2016-3-195-203

Views: 936


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)