Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Free carrier recombination lifetime calculation from photoconductivity decay measurement in non-passivated silicon

https://doi.org/10.17073/1609-3577-2016-3-210-216

Abstract

In indirect band gap semiconductors, for example, in silicon, the free carrier recombination lifetime is determined by recombination through deep level centers and inversely proportional to their concentration. This parameter is of the utmost importance for characterizing the quality of the material. Contactless methods of free carrier recombination lifetime measurements by protoconductivity decay analysis are most widely used. The measurement results are largely affected by surface recombination. The calculation of the lifetime in the bulk of a sample from the characteristic time of photoconductivity decay remains relevant since there is no ambiguous analytical solution of the continuity equation for this case. In this paper, an analysis of the relaxation of photoconductivity in single−crystal silicon wafers with non−passivated surfaces was carried out with numerical methods. The applicability of the well–known formulas for estimating the contribution of surface recombination to the effective photoconductivity decay time was discussed. We show that the time in which the «fast» exponents disappear depends on the relative thickness of the sample. It is only this part of the relaxation curve that the effective decay time is determined by the maximum value of the surface component of the relaxation time and is described by the well−known formulas. The saturation of the effective relaxation time at the point when the signal intensity reaches 45 % of the peak one (the onset point of effective decay time counting pursuant to the SEMI MF 1535 standard recommendation) only occurs in samples with thicknesses less than 3—5 diffusion lengths. For thick samples the contribution of the «fast» exponentials to the effective photoconductivity relaxation time is observed up to 5 % of the peak signal (i.e., until the noise level of the measured signal is reached). Use of the recommended formulas, including for the «infinite recombination rate» case at which the maximum surface lifetime is d2/π2D, leads to a sufficiently large (up to 20 %) error in free carrier recombination lifetime calculation.

About the Authors

I. M. Anfimov
National University of Science and Technology MISiS; RIIS Ltd.
Russian Federation

Ilya M. Anfimov — Engineer (1), General Director (2). 

4 Leninsky Prospekt, Moscow 119049; 3/1 Krymskiy Val, Moscow 119049. 



S. P. Kobeleva
National University of Science and Technology MISiS; RIIS Ltd.
Russian Federation

Svetlana P. Kobeleva — Cand. Sci. (Phys.−Math.), Associate Professor (1), Leading Specialist (2). 

4 Leninsky Prospekt, Moscow 119049; 3/1 Krymskiy Val, Moscow 119049. 



A. V. Pylnev
National University of Science and Technology MISiS.
Russian Federation

Alexander V. Pylnev1 — magistrant.

4 Leninsky Prospekt, Moscow 119049.



I. V. Schemerov
National University of Science and Technology MISiS; RIIS Ltd.
Russian Federation
 Ivan V. Schemerov — Cand. Sci. (Eng.), Engineer (1), Leading Engineer (2). 4 Leninsky Prospekt, Moscow 119049; 3/1 Krymskiy Val, Moscow 119049.


D. S. Egorov
National University of Science and Technology MISiS.
Russian Federation

Denis S. Egorov1 — Student.

4 Leninsky Prospekt, Moscow 119049.



S. V. Yurchuk
National University of Science and Technology MISiS.
Russian Federation

 Sergei Yu. Yurchuk1 — Associate Professor.

4 Leninsky Prospekt, Moscow 119049.



References

1. Väinölä H., Yli−Koski M., Haarahiltunen A., Sinkkonen J. Sensitive copper detection in p−type CZ silicon using µPCD. J. Electrochem. Soc., 2003, vol. 150, no. 12, pp. G790—G794. DOI: 10.1149/1.1624845

2. Schroder D. K. Semiconductor material and device characterization. New York: Wiley−Interscience/IEEE, 2006. 781 p.

3. Kobeleva S. P. Methods of silicon single crystal physical properties measuring (Review). Zavodskaya laboratoriya. Diagnostika materialov = Industrial Laboratory, 2007, vol. 73, no. 1, pp. 60—67. (In Russ.)

4. Ogita Y. I. Bulk lifetime and surface recombination velocity measurement method in semiconductor wafers. J. Appl. Phys., 1996, vol. 79, no. 9, art. 6954. DOI: 10.1063/1.361459

5. Härkönen J., Tuovinen E., Li Z., Luukka P., Verbitskaya E., Eremin V. Recombination lifetime characterization and mapping of silicon wafers and detectors using the microwave photoconductivity decay (µPCD) technique. Materials Science in Semiconductor Processing, 2006, vol. 9, no. 1–3, pp. 261—265. DOI: 10.1016/j. mssp.2006.01.049

6. SEMI MF 1535−0707. Test method for carrier recombination lifetime in silicon wafers by noncontact measurement of photoconductivity decay by microwave reflectance. San Jose, 2010

7. Wilson M., Edelman P., Lagowski J., Olibet S., Mihailetchi V. Improved QSS−µPCD measurement with quality of decay control: Correlation with steady−state carrier lifetime. Solar Energy Materials and Solar Cells, 2012, vol. 106, pp. 66—70. DOI: 10.1016/j. solmat.2012.05.040

8. Klein D., Wuensch F., Kunst M. The determination of charge− carrier lifetime in silicon. Phys. Status Solidi (b)., 2008, vol. 245, no. 9, pp. 1865—1876. DOI: 10.1002/pssb.200879544

9. Heinz F. D., Warta W., Schubert M. C. Separation of the surface and bulk recombination in silicon by means of transient photoluminescence. Appl. Phys. Lett., 2017, vol. 110, no. 4, art. 042105. DOI: 10.1063/1.4975059

10. Anfimov I. M., Kobeleva S. P., Shchemerov I. V. Measurement of lifetime of nonequilibrium charge carriers in single−crystal silicon. Inorg. Mater., 2015, vol. 51, no. 15, pp. 1447—1451. DOI: 10.1134/ S0020168515150029

11. Fontaine J. C., Barthe S., Ponpon J. P., Schunck J. P., Siffert P. A simple procedure based on the PCD method for determination of recombination lifetime and surface recombination velocity in silicon. Measurement Science and Technology, 1994, vol. 5, no. 1, pp. 47—50. DOI: 10.1088/0957-0233/5/1/008

12. Landheer K., Kaiser M., Verheijen M. A., Tichelaar F. D., Poulios I., Schropp R. E. I., Rath J. K. Decoupling high surface recombination velocity and epitaxial growth for silicon passivation layers on crystalline silicon. Phys. D: Appl. Phys., 2017, vol. 50, no. 6. art. 065305. DOI: 10.1088/1361-6463/aa535f

13. Adachi D., Hernandez J. L., Yamamoto K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett., 2015, vol. 107, no. 23, art. 233506. DOI: 10.1063/1.4937224

14. Bonilla R. S., Reichel C., Hermle M., Wilshaw P. R. Extremely low surface recombination in 1 Ω cm n−type monocrystalline silicon. Phys. Status Solidi RRL, 2017, vol. 11, no. 1, art. 1600307. DOI: 10.1002/ pssr.201600307

15. Ogita Y .I., Tachihara M. Reduction of surface recombination velocity by rapid thermal annealing of p−Si passivated by catalytic−chemical vapor deposited alumina films. Thin Solid Films, 2015, vol. 575, pp. 56—59. DOI: 10.1016/j.tsf.2014.10.024

16. Blakemore J. S. Semiconductor statistics. New York: Dover publishing, 1987. 381 p.

17. Giesecke J. A., Glunz S. W., Warta W. Understanding and resolving the discrepancy between differential and actual minority carrier lifetime. J. Appl. Phys., 2013, vol. 113, no. 7, art. 073706. DOI: 10.1063/1.4790716

18. Brody J., Rohatgi A., Ristow A. Review and comparison of equations relating bulk lifetime and surface recombination velocity to effective lifetime measured under flash lamp illumination. Solar Energy Materials and Solar Cells, 2003, vol. 77, no. 3, pp. 293—301. DOI: 10.1016/S0927-0248(02)00350-1

19. Horanyi T. S., Pavelka T., Tutto P. In situ bulk lifetime measurement on silicon with chemically passivated surface. Appl. Surf. Sci., 1993, vol. 63, no. 1–4, pp. 306—311. DOI: 10.1016/01694332(93)90112-O

20. Kobeleva S. P., Yurchuk S. Yu., Yarynchak M. A., Kalinin V. V. Effect of surface recombination on minority carrier lifetime measurements in single crystal silicon ingots. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronic Technics, 2006, no. 4, pp. 17—20. (In Russ.)

21. Goryunov N. N., Kobeleva S. P., Kalinin V. V., Yurchuk S. Yu., Slesarev A. N., Chiyakin A. N. Determination of the volumetric lifetime of minority charge carriers on the non−passivated surfaces of single−crystal silicon. Zavodskaya laboratoriya. Diagnostika materialov = Industrial Laboratory, 2004, vol. 70, no. 6, pp. 23—28. (In Russ.)

22. SEMI MF 391−0310. Test methods for minority−carrier diffusion length in extrinsic semiconductors by measurement of steady−state surface photovoltage. San Jose, 2010.

23. Kobeleva S. P., Anfimov I. M., Schemerov I. V. A device for free−carrier recombination lifetime measurements. Instrum. Exp. Tech., 2016, vol. 59, no. 3, pp. 420—424. DOI: 10.1134/ S0020441216030064


Review

For citations:


Anfimov I.M., Kobeleva S.P., Pylnev A.V., Schemerov I.V., Egorov D.S., Yurchuk S.V. Free carrier recombination lifetime calculation from photoconductivity decay measurement in non-passivated silicon. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(3):210-216. (In Russ.) https://doi.org/10.17073/1609-3577-2016-3-210-216

Views: 1057


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)