SEPARATE DETERMINATION OF THE PHOTOELECTRIC PARAMETERS OF THE BASE REGION OF N+−P(N)−P+ SILICON STRUCTURE BY NONCONTACT METHOD BASED ON QUANTUM EFfi CIENCY RELATION MEASUREMENTS AT TWO WAVELENGTHS
https://doi.org/10.17073/1609-3577-2017-1-60-66
Abstract
About the Authors
O. G. KoshelevRussian Federation
1 Leninskie Gory, Moscow 119991.
N. G. Vasiljev
Russian Federation
1 Leninskie Gory, Moscow 119991.
References
1. 32th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC 2016). Munich, 2016. URL: https:// www.eupvsec−proceedings.com/proceedings/dvd.html (accessed 06.04.2017)
2. Takahiro Mishima, Micio Taguchi, Hitoshi Sakata, Eiji Maruyama. Development status of high−efficiency HIT solar cells. Solar Energy Materials and Solar Cells, 2011, vol. 95, no. 1, pp. 18—21. DOI: 10.1016/j.solmat.2010.04.030
3. Schmidt J., Aberle A. G. Accurate method for the determination of bulk minority−carrier lifetimes of mono− and multicrystalline silicon wafers. J. Appl. Phys., 1997, vol. 81, no. 9, pp. 6186—6199. DOI: 10.1063/1.364403
4. Patent US 5438276 A. Apparatus for measuring the life time of minority carriers of a semiconductor wafer. Yutaka Kawata, Takuya Kusaka, Hidehisa Hashizume, Futoshi Ojima, 1995.
5. SEMI MF1535−0707. Test method for carrier recombination lifetime in silicon wavers by noncontact measurements of photoconductivity decay by microwave reflectance. URL: http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=211&DownloadID=942 (accessed: 23.03.2017)
6. Gaubas E., Kaniava A. Determination of recombination parameters in silicon wafers by transient microwave absorption. Rev. Scientific Instruments, 1996, vol. 67, no. 6, pp. 2339—2345. DOI: 10.1063/1.1146943
7. Wezep D. A., Velden M. H. L., Bosra D. M., Bosh R. C. M. MDP lifetime measurements as a tool to predict solar cell efficiency. 26th Europ. Photovoltaic Solar Energy Conf. and Exhibition. Progress in Photovoltaics: Research and Applications. Munich, 2016, pp. 1423—1428.
8. Metzger W. K. How lifetime fluctuations, grain−boundary recombination, and junctions affect lifetime measurements and their correlation to silicon solar cell performance. Solar Energy Materials and Solar Cells, 2008, vol. 92, no. 9, pp. 1123—1135. DOI: 10.1016/j.solmat.2008.04.001
9. Waldmeyer J. A contactless method for determination of carrier lifetime, surface recombination velocity, and diffusion constant in semiconductors. J. Appl. Phys., 1988, vol. 63, no. 6, pp. 1977— 1983. DOI: 10.1063/1.341097
10. Buczkowski A., Radzimski Z. J., Rozgonyi G. A., Shimura F. Bulk and surface components of recombination lifetime based on a two−laser microwave reflection technique. J. Appl. Phys., 1991, vol. 69, no. 9, pp. 6495—6499. DOI: 10.1063/1.348857
11. Solnechnye elementy tekhnologii HIT — nashe budushchee? [Solar cells technology HIT — our future?]. URL: http://solar−front.livejournal.com/11644.html (accessed 06.04.2017). (In Russ.)
12. Kontsevoi Yu. A., Brashevan Yu. V., Zavadskii Yu. I., Maksimov Yu. A., Gladyshev D. A., Chernokozhin V. V. Diagnostics of silicon wafers based on measurement of parameters and the thermal radiation of solar cells. Industrial laboratory, 2000, vol. 66, no. 10, pp. 666—668.
13. Babajanyan A., Sargsyan T., Melikyan H., Kim Seungwan, Kim Jongchel, Lee Kiejin. Investigation of the photovoltaic effect in solar cells by usinga near−field microwave microscope. J. Korean Phys. Soc., 2009, vol. 55, no. 1, pp. 154—157. DOI: 10.3938/jkps.55.154
14. Koshelev O. G., Untila G. G. About the relaxation time of microwave photoconductivity in the base region of silicon solar cells under local illumination. XII Rossiiskaya konferentsiya po fizike poluprovodnikov = Russian Conference on Semiconductor Physics. Moscow; Ershovo, 2015. P. 380. (In Russ.)
15. Koshelev O.G. Reduction in the contrast of photoconductivity along the area of inhomogeneous p+−n(p)−n+−type silicon structures due to currents along the p+− and n+−type layers. Bulletin of the Russian Academy of Sciences: Physics, 2017, vol. 81, no. 1, pp. 34—37. DOI: 10.3103/S1062873817010142
16. Koshelev O. G., Morozova V. A. A nondestructive method for measuring the photoelectric parameters of wafers with p−n junctions. Solid−State Electronics, 1996, vol. 39, no. 9, pp. 1379—1383. DOI: 10.1016/0038−1101(96)00040−8
17. Vasil’ev A. M., Landsman A. P. Poluprovodnikovye fotopreobrazovateli [Semiconductor photoconverters]. Moscow: Sovetskoe radio, 1971. 246 p. (In Russ.)
18. Sze S. M. Physics of Semiconductor Devices. New York (USA): Wiley, 1981. 868 p.
Review
For citations:
Koshelev O.G., Vasiljev N.G. SEPARATE DETERMINATION OF THE PHOTOELECTRIC PARAMETERS OF THE BASE REGION OF N+−P(N)−P+ SILICON STRUCTURE BY NONCONTACT METHOD BASED ON QUANTUM EFfi CIENCY RELATION MEASUREMENTS AT TWO WAVELENGTHS. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(1):60-66. (In Russ.) https://doi.org/10.17073/1609-3577-2017-1-60-66