LOW DOSE RATE EFFECTS IN SILICON BASED DEVICES AND INTEGRATED CIRCUITS: A REVIEW
https://doi.org/10.17073/1609-3577-2016-1-5-21
Abstract
This paper is a review on total ionizing dose effects in silicon semiconductor devices and integrated circuits under low dose rate irradiation that is typical of space applications. We consider the mechanism of radiation induced charge buildup in the dielectric of MOS structures and at the semiconductor/dielectric interface; in addition, the paper reports an analysis of the nature of defects in Si/ SiO2 structure which are responsible for these processes. Also, the paper describes specific features of annealing of the charge trapped in dielectric and interface traps. The degradation of MOS and bipolar devices is considered for low dose rate irradiation conditions inherent to space application. We show that under low dose rate irradiation MOS devices are susceptible to time−dependent effects which are determined by the kinetics of charge buildup and annealing in the Si/SiO2 structure, while bipolar devices may be susceptible to true dose rate effects. The paper considers basic experimental modeling methods for low dose rate effects during accelerated testing of silicon devices and integrated circuits. We show that it is necessary to use essentially different experimental approaches for the modeling of time−dependent effects in MOS devices and true dose rate effects in bipolar devices and integrated circuits.
About the Author
K. I. TaperoRussian Federation
Konstatntin I. Tapero1,2 — Cand. Sci. (Phys.−Math.); Associate Professor.
8, Turayevo, Lytkarino, Moscow region, 140080.
References
1. Barth J. L. Applying computer simulation tools to radiation effects problems. IEEE NSREC. Short Course Notes. Snowmass Village (CO, USA), 1997, pp. I−1—I−83.
2. Stassinopoulos E. G., Raymond J. P. The space radiation environment for electronics. Proc. IEEE, 1988, 76(11), pp. 1423—1442.
3. Srour J. R., McGarrity J. M. Radiation effects on microelectronics in space, Proc. IEEE, 1988. 76(11). P. 1443—1469.
4. Tapero K. I., Ulimov V. N., Chlenov A. M. Radiatsionnye effekty v kremnievykh integral’nykh skhemakh kosmicheskogo primeneniya [Radiation effects in silicon integrated circuits for space application]. Moscow: BINOM. Laboratoriya znanii, 2012. (In Russ.)
5. Tapero K. I., Didenko S. I. Osnovy radiatsionnoi stoikosti izdelii elektronnoi tekhniki: radiatsionnye effekty v izdeliyakh elektronnoi tekhniki: ucheb. posobie [Fundamentals of radiation resistance of electronic products: Radiation Effects in Electronic products]. Moscow: Izd. dom MISiS, 2013. (In Russ.)
6. Ioniziruyushchie izlucheniya kosmicheskogo prostranstva i ikh vozdeistvie na bortovuyu apparaturu kosmicheskikh apparatov [Ionizing radiation of outer space and their impact on the on−board equipment of spacecrafts]. Moscow: FIZMATLIT, 2013. (In Russ.)
7. Schwank J. R. Total dose effects in MOS devices. IEEE NSREC Short Course Notes, 2002, pp. III−1 — III−123.
8. Helms C. R., Poindexter E. H. The silicon — silicon−dioxide system: its microstructure and imperfections. Rep. Prog. Phys., 1994, no. 57, pp. 791—852.
9. Lenahan P. M., Dressendorfer P. V. Hole traps and trivalent silicon centers in metal/oxide/silicon devices. J. Appl. Phys., 1984, vol. 55, no. 10, pp. 3495—2499.
10. Warren W. L., Shaneyfelt M. R., Schwank J. R., Fleetwood D. M., Winokur P. S., Devine R. A. B., Maszara W. P., McKitterick J. B. Paramagnetic defect centers in BESOI and SIMOX buried oxides. IEEE Trans. Nucl. Sci., 1993, vol. 40, no. 6, pp. 1755—1764. DOI: 10.1109/23.273482
11. Conley J. F., Lenahan P. M., Roitman P. Electron spin resonance study of E’ trapping centers in SIMOX buried oxides. IEEE Trans. Nucl. Sci., 1991, vol. 38, no. 6, pp. 1247—1252.
12. Herve D., Leray J. L., Devine R. A. B. comparative study of radiation−induced electrical and spin active defects in buried SiO2 layers. J. Appl. Phys., 1992, vol. 72, no. 8, pp. 3634—3640.
13. Boesch H. E. (Jr.), Taylor T. L. Time−dependent radiation− induced charge effects in wafer−bonded SOI buried oxides. IEEE Trans. Nucl. Sci., 1992, vol. 39, no. 6, pp. 2103−2113.
14. Boesch H. E. (Jr.), Taylor T. L., Hite L. R., Bailey W. E. Time− dependent hole and electron trapping effects in SIMOX buried oxides. IEEE Trans. Nucl. Sci., 1990., vol. 37, no. 6, pp. 1982—1989
15. Stahlbush R. E., Campisi G. J., McKitterick J. B., Maszara W. P., Roitman P., Brown G. A. Electron and hole trapping in irradiated SIMOX, ZMR, and BESOI buried oxides. IEEE Trans. Nucl. Sci., 1992, vol. 39, no. 6, pp. 2086—2097. DOI: 10.1109/23.211407
16. Winokur P. S., Boesch H. E. (Jr.), McGarrity J. M., McLean F. B. Two−stage process for buildup of radiation−induced interface states. J. Appl. Phys., 1979, vol. 50, no. 5, pp. 3492—3495.
17. McLean F. B. A framework for understanding radiation− induced interface states in SiO2 MOS structures. IEEE Trans. Nucl. Sci., 1980, vol. 27, no. 6, pp. 1651—1657.
18. Shaneyfelt M. R., Schwank J. R., Fleetwood D. M., Winokur P. S., Hughes K. L., Hash G. L., Connors M. P. Interface trap buildup rates in wet and dry oxides. IEEE Trans. Nucl. Sci., 1992, vol. 39, no. 6, pp. 2244—2251. DOI: 10.1109/23.211427
19. Schwank J. R., Winokur P. S., Sexton F. W., Fleetwood D. M., Perry J. H., Dressendorfer P. V., Sanders D. T., Turpin D. C. Radiation− induced interface−state generation in MOS devices. IEEE Trans. Nucl. Sci., 1986, vol. 33, no. 6, pp. 1177—1184.
20. Saks N. S., Dozier C. M., Brown D. B., Time dependence of interface trap formation in MOSFETs following pulsed irradiation. IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1168—1177.
21. Boesch H. E. (Jr.), Time−dependent interface trap effects in MOS devices. IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1160—1167.
22. Lenahan P. M., Brower K. L., Dressendorfer P. V., Johnson W. C. Radiation−induced trivalent silicon defect buildup at the Si−SiO2 interface in MOS structures. IEEE Trans. Nucl. Sci., 1981, vol. 28, no. 6, pp. 4105—4106.
23. Lenahan P. M., Dressendorfer P. V. An electron spin resonance study of radiation−induced electrically active paramagnetic centers at the Si/SiO2 interface. J. Appl. Phys., 1983, vol. 54, no. 3, pp. 1457—1460.
24. Poindexter E. H., Caplan P. J., Deal B. E., Razouk R. R. Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers. J. Appl. Phys., 1981, vol. 52, no. 2, pp. 879—884.
25. Gerardi G. J., Poindexter E. H., Caplan P. J., Johnson N. M. Interface traps and Pb centers in oxidized (100) silicon wafers. Appl. Phys. Lett., 1986, vol. 49, no. 6, pp. 348—350.
26. Pease R. L., Schrimpf R. D., Fleetwood D. M. ELDRS in bipolar linear circuits: a review. IEEE Trans. Nucl. Sci., 2009, vol. 56, no. 6, pp. 1894—1908.
27. Согоян А. В., Давыдов Г. Г. Особенности пострадиационных релаксационных процессов в КНС ИС // Н.−техн. сб. «Радиационная стойкость электронных систем». 2005. Вып. 8. С. 49—50. (In Russ.)
28. Shaneyfelt M. R., Schwank J. R., Witczak J. R., Fleetwood D. M., Pease R. L., Winokur P. S., Riewe L. C., Hash G. L. Thermal− stress effects and enhanced low dose rate sensitivity in linear bipolar ICs. IEEE Trans. Nucl. Sci., 2000, vol. 47, no. 6, pp. 2539—2545. DOI: 10.1109/23.903805
29. Boesch H. E. (Jr.), McGarrity J. M., McLean F. B. Temperarure− and field−dependent charge relaxation in SiO2 gate insulators. IEEE Trans. Nucl. Sci., 1978, vol. 25, no 3, pp. 1012—1016.
30. Boesch H. E. (Jr.), McLean F. B., McGarrity J. M., Winokur P. S. Enhanced flatband voltage recovery in hardened thin MOS capasitors. IEEE Trans. Nucl. Sci., 1978, vol. 25, no 6, pp. 1239—1245.
31. Fleetwood D. M., Winokur P. S., Schwank J. R. Using laboratory X−ray and Co−60 irradiations to predict CMOS device response in strategic and space environments. IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1497—1505.
32. Schwank J. R., Winokur P. S., McWhorter P. J., Sexton F. W., Dressendorfer P. V., Turpin D. C. Physical mechanisms contributing to device «Rebound». IEEE Trans. Nucl. Sci., 1984, vol. 31, no. 6, pp. 1434—1438.
33. Derbenwick G. F., Sander H. H. CMOS hardness for low− dose−rate environments. IEEE Trans. Nucl. Sci., 1977, vol. 24, no. 6, pp. 2244—2247.
34. Lelis A. J., Boesch H. E. (Jr.), Oldham T. R., McLean F. B. Reversibility of trapped hole charge. IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1186—1191.
35. Fleetwood D. M., Shaneyfelt M. R., Reiwe L. C., Winokur P. S., Reber R. A. The role of border traps in MOS high− temperature postirradiation annealing response. IEEE Trans. Nucl. Sci., 1993, vol. 40, no. 6, pp. 1323—1334. DOI: 10.1109/23.273535
36. McWhorter P. J., Miller S. L., Miller W. M. Modeling the anneal of radiation−induced trapped holes in a varying thermal environment. IEEE Trans. Nucl. Sci., 1990, vol. 37, no. 6, pp. 1682—1689.
37. Oldham T. R., Lelis A. J., McLean F. B., Spatial dependence of trapped holes determined from tunneling analysis and measured anneaking. IEEE Trans. Nucl. Sci., 1986, vol. 33, no. 6, pp. 1203—1209.
38. McWhorter P. J., Miller S. L., Dellin T. A. Modeling the memory retention characteristics of SNOS transistors in a varying thermal environment. J. Appl. Phys., 1990, vol. 68, no. 4, pp. 1902—1908.
39. Lelis A. J., Oldham T. R., DeLancey W. M., Response of interface traps during high−temperature anneals. IEEE Trans. Nucl. Sci., 1991, vol. 38, no. 6, pp. 1590—1597.
40. Fleetwood D. M., Thome F. V., Tsao S. S., Dressendorfer P. V., Dandini V. J., Schwank J. R. High−temperature silicon−on−insulator electronics for space nuclear power systems: requirements and feasibility. IEEE Trans. Nucl. Sci., 1988., vol. 35, no. 5, pp. 1099—1112. DOI: 10.1109/23.7506
41. Winokur P. S., Sexton F. W., Schwank J. R., Fleetwood D. M., Dressendorfer P. V., Wrobel T. F., Turpin D. C. Total−dose radiation and annealing studies: implications for hardness assurance testing. IEEE Trans. Nucl. Sci., 1986, vol. 33, no. 6, pp. 1343—1351. DOI: 10.1109/ TNS.1986.4334603
42. Jonston A. H., Super recovery of total dose damage in MOS devices. IEEE Trans. Nucl. Sci., 1984, vol. 31, no. 6, pp. 1427—1433.
43. Schrimpf R. D. Physics and hardness assurance for bipolar technologies. IEEE NSREC Short Course, 2001, pp. IV−1—IV−67.
44. Enlow E. W., Pease R. L., Combs W. E., Schrimpf R. D., Nowlin R. N. Response of advanced bipolar processes to ionizing radiation. IEEE Trans. Nucl. Sci., 1991, vol. 38, no. 6, pp. 1342—1351. DOI: 10.1109/23.124115
45. McClure S., Pease R. L., Will W., Perry G. Dependence of total dose response of bipolar linear micro−circuits on applied dose rate. IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 6, pp. 2544—2549.
46. Johnston A. H., Swift G. M., Rax B. G. Total dose effects in conventional bipolar transistors and linear integrated circuits. IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 6, pp. 2427—2436.
47. Beaucour J. T., Carriere T., Gach A., Laxague D. Total dose effects on negative voltage regulator. IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 6, pp. 2420—2426. DOI: 10.1109/23.340597
48. Jie Chen X., Barnaby H. J., Adell P., Pease R. L., Vermeire B., Holbert K. E. Modeling the dose rate response and the effects of hydrogen in bipolar technologies. IEEE Trans. Nucl. Sci., 2009, vol. 56, no. 6, pp. 3196—3202. DOI: 10.1109/TNS.2009.2034154
49. Tapero K. I., Petrov A. S., Ulimov V. N., Chubunov P. A., Anashin V. S. Comparison of irradiation at low dose rate and irradiation at elevated temperature to reveal ELDRS in bipolar linear circuits. 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS). Moscow, 2015 P. 1—5. DOI: 10.1109/RADECS.2015.7365593
50. Johnston A. H., Lee C. I., Rax B. G. Enhanced damage in bipolar devices at low dose rates: effects at very low dose rates. IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 6, pp. 3049—3059.
51. Witczak S. C., Schrimpf R. D., Galloway K. F., Fleetwood D. M., Pease R. L., Puhl J. M., Schmidt D. M., Combs W. E., Suehle J. S. Accelerated tests for simulating low dose rate gain degradation of lateral and substrate pnp bipolar junction transistors. IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 6, pp. 3151—3160. DOI: 10.1109/23.556919
52. Романенко А. А. Влияние ионизирующего излучения низкой интенсивности на биполярные изделия электронной техники // Вопросы атомной науки и техники. Сер.: Физика радиационного воздействия на радиоэлектронную аппаратуру. − 2002. − Вып. 4. − С. 121—132. (In Russ.)
53. Fleetwood D. M., Kosier S. L., Nowlin R.N., Schrimpf R. D., Reber R. A., DeLaus M., Winokur P. S., Wei A., Combs W. E., Pease R. L. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates. IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 6, pp. 1871—1883. DOI: 10.1109/23.340519
54. Fleetwood D. M., Reiwe L. C., Schwank J. R., Witczak S. C., Schrimpf R. D. Radiation effects at low electric fields in thermal, SIMOX, and bipolar−base oxides. IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 6, pp. 2537—2546. DOI: 10.1109/23.556834
55. Witczak S. C., Lacoe R. C., Mayer D. C., Fleetwood D. M., Schrimpf R. D., Galloway K. F. Space charge limited degradation of bipolar oxides at low electric fields. IEEE Trans. Nucl. Sci., 1998, vol. 45, no. 6, pp. 2339—2351. DOI: 10.1109/23.736453
56. Graves R. J., Cirba C. R., Schrimpf R. D., Milanowski R. J., Michez A., Fleetwood D. M., Witczak S. C., Saigne F. Modeling low− dose−rate effects in irradiated bipolar−base oxides. IEEE Trans. Nucl. Sci., 1998, vol. 45, no. 6, pp. 2352—2360. DOI: 10.1109/23.736454
57. Rashkeev S. N., Cirba C. R., Fleetwood D. M., Schrimpf R. D., Witczak S. C., Michez A., Pantelides S. T. Physical model for enhanced interface−trap formation at low dose rates. IEEE Trans. Nucl. Sci., 2002, vol. 49, no. 6, pp. 2650—2655. DOI: 10.1109/TNS.2002.805387
58. Hjalmarson H. P., Pease R. L., Witczak S. C., Shaneyfelt M. R., Schwank J. R., Edwards A. H., Hembree C. E., Mattsson T. R. Mechanisms for radiation dose−rate sensitivity of bipolar transistors. IEEE Trans. Nucl. Sci., 2003, vol. 50, no. 6, pp. 1901—1909. DOI: 10.1109/TNS.2003.821803
59. Tsetseris L., Schrimpf R. D., Fleetwood D. M., Pease R. L., Pantelides S. T. Common origin for enhanced low−dose−rate sensitivity and bias temperature instability under negative bias. IEEE Trans. Nucl. Sci., 2005, vol. 52, no. 6, pp. 2265—2271. DOI: 10.1109/TNS.2005.860670
60. Boch J., Saigne F., Touboul A. D., Ducret S., Carlotti J.−F., Bernard M., Schrimpf R. D., Wrobel F., Sarrabayrouse G. Doserate effects in bipolar oxides: Competition between trap filling and recombination. Appl. Phys. Lett., 2006, vol. 88, 232113. DOI: 10.1063/1.2210293
61. Boch J., Saigne F., Schrimpf R. D., Vaill J.−R., Dusseau L., Lorfvre E. Physical model for low−dose−rate effect in bipolar devices. IEEE Trans. Nucl. Sci., 2006, vol. 53, no. 6, pp. 3655—3660. DOI: 10.1109/TNS.2006.886008
62. Fleetwood D. M., Schrimpf R. D., Pantelides S. T., Pease R. L., Dunham G. W. Electron capture, hydrogen release and enhanced gain degradation in bipolar linear devices. IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 6, pp. 2986—2991. DOI: 10.1109/TNS.2008.2006485
63. Hjalmarson H. P., Pease R. L., Devine R. Calculations of radiation dose−rate sensitivity of bipolar transistors. IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 6, pp. 3009—3015.
64. Belyakov V. S., Pershenkov V. S., Shalnov A. V., Shvetzov− Shilovsky I. N. Use of MOS structures for the investigation of low− dose−rate effects in bipolar transistors. IEEE Trans. Nucl. Sci., 1995, vol. 42, no. 6, pp. 1660—1666.
65. Freitag R. K., Brown D. B. Study of low−dose−rate effects in commercial linear bipolar ICs. IEEE Trans. Nucl. Sci., 1998, vol. 45, no. 6, pp. 2649—2658.
66. Petrov A. S., Tapero K. I., Ulimov V. N. Influence of temperature and dose rate on the degradation of BiCMOS operational amplifiers during total ionizing dose testing. Microelectronics Reliability, 2014, vol. 54, pp. 1745—1748.
67. Tapero K. I., Petrov A. S., Chubunov P. A., Ulimov V. N., Anashin V. S. Dose effects in CMOS operational amplifiers with bipolar and CMOS input stage at different dose rates and temperatures, 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS) Moscow, 2015. P. 1—4. DOI: 10.1109/RADECS.2015.7365602
Review
For citations:
Tapero K.I. LOW DOSE RATE EFFECTS IN SILICON BASED DEVICES AND INTEGRATED CIRCUITS: A REVIEW. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(1):5-21. (In Russ.) https://doi.org/10.17073/1609-3577-2016-1-5-21