MICROSCOPIC AND X–RAY SPECTROSCOPIC STUDY OF NI ROD MASSIVES IN SILICON DIOXIDE MATRIX
https://doi.org/10.17073/1609-3577-2016-1-50-58
Abstract
Ni rods distributed in silicon dioxide matrix formed on silicon wafers have been characterized by means of scanning electron microscopy and X–ray absorption near edge structure (XANES) spec
troscopy. Ni rods have been obtained by electrochemical deposition of the metal onto a silicon dioxide matrix pores formed with the tracking technique. Latent tracks have been obtained by SiO2 film irradiation with heavy gold ions at the Hahn–Meitner–Institute (Berlin, Germany). Scanning electron microscopy has established the peculiarities of pore filling with metal and the specificity of Ni rod formation and their morphology (surface and cleavages). High intensity synchrotron radiation of the Helmholtz Zentrum Berlin has been used in the ultrasoft X–ray range for electron energy structure studies of the Ni rods with the XANES technique. The specific phase composition of the surface layers has been investigated using Si, Ni and O atom local surrounding analysis performed based on synchrotron XANES technique data including the rod/matrix interface. Possible Ni silicide formation has been demonstrated for a certain rod array formation mode in which partial SiO2 matrix destruction occurs and the metal contacts with the silicon wafer. Natural oxidation specificity has also been studied for the Ni rod/SiO2 heterostructure surface.
About the Authors
S. Yu. TurishchevRussian Federation
Sergey Yu. Turishchev — Cand. Sci. (Phys.−Math.), Senior Researcher.
Universitetskaya Sq., Voronezh 394018.
E. V. Parinova
Russian Federation
Elena V. Parinova — Postgraduate Student.
Universitetskaya Sq., Voronezh 394018.
D. A. Koyuda
Russian Federation
Dmitry A. Koyuda — Postgraduate Student.
Universitetskaya Sq., Voronezh 394018.
D. E. Spirin
Russian Federation
Dmitry E. Spirin — Postgraduate Student.
Universitetskaya Sq., Voronezh 394018.
D. N. Nesterov
Russian Federation
Dmitrii N. Nesterov — Postgraduate Student.
Universitetskaya Sq., Voronezh 394018.
R. V. Romantsov
Russian Federation
Roman V. Romantsov — Student.
Universitetskaya Sq., Voronezh 394018.
J. A. Fedotovа
Belarus
Julia A. Fedotovа — Dr. Sci. (Phys.−Math.), Head of Laboratory, National Center of Particles and High−Energy Physics.
4 Nezavisimosti Ave., Minsk 220030.
E. A. Streltsov
Belarus
Eugene A. Streltsov — Dr. Sci. (Chem.), Professor, Head of Department of the Electrochemistry.
4 Nezavisimosti Ave., Minsk 220030.
M. V. Malashchonak
Belarus
Mikalai V. Malashchonak — Junior Research Assistant.
4 Nezavisimosti Ave., Minsk 220030.
A. K. Fedotov
Belarus
Alexander K. Fedotov — Dr. Sci. (Phys.−Math.), Professor, Head of Department of the Energy Physics.
4 Nezavisimosti Ave., Minsk 220030.
References
1. Herino R. Nanocomposite materials from porous silicon. Materials Science and Engineering: B, 2000, vol. 69−70, pp. 70—76.
2. Sasano J., Murota R., Yamauchi Y., Sakka T., Ogata Y. H. Re−dissolution of copper deposited onto porous silicon in immersion plating. Journal of Electroanalytical Chemistry, 2003, vol. 559, pp. 125—130.
3. Rumpf K., Granitzer P., Pölt P., Reichmann A., Krenn H. Structural and magnetic characterization of Ni−filled porous silicon. Thin Solid Films, 2006, vol. 515, pp. 716—720.
4. Granitzer P., Rumpf K., Krenn H. Micromagnetics of Ni− nanowires filled in nanochannels of porous silicon. Thin Solid Films, 2006, vol. 515, pp. 735—738.
5. Fink D., Alegaonkar P.S., Petrov A.V., Wilhelm M., Szimkowiak P., Behar M., Sinha D., Fahrner W.R., Hoppe K., Chadderton L. T. High energy ion beam irradiation of polymers for electronic applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, vol. 236, pp. 11—20.
6. Ivanou D.K., Streltsov Е.A., Fedotov A.K., Mazanik A.V., Fink D., Petrov A. Electrochemical deposition of PbSe and CdTe nanoparticles onto p−Si (100) wafers or into nanopores in SiO2|Si (100) structure. Thin Solid Films, 2005, vol. 490, pp. 154—160.
7. Ivanova Yu. A., Ivanou D. K., Fedotov A. K., Streltsov Е. A., Demyanov S. E., Petrov A. V., Kaniukov E. Yu., Fink D. Electrochemical deposition of Ni and Cu onto monocrystalline n−Si(100) wafers and into nanopores in Si/SiO2 template. Journal of Materials Science, 2007, vol. 42, pp. 9163—9165.
8. Ragoisha G.A., Bondarenko A.S., Osipovich N.P., Rabchynski S.M., Streltsov E.A. Multiparametric characterisation of metal− chalcogen atomic multilayer assembly by potentiodynamic electrochemical impedance spectroscopy. Electrochimica Acta, 2008, vol. 53, pp. 3879—3888.
9. Turishchev S. Yu., Terekhov V. A., Kashkarov V. M., Domashevskaya E. P., Molodtsov S. L., Vyalykh D. V. Investigations of the electron energy structure and phase composition of porous silicon with different porosity. Journal of Electron Spectroscopy and Related Phenomena, 2007, vols. 156−158, pp. 445—451.
10. Terekhov V. A., Turishchev S. Yu., Kashkarov V. M., Domashevskaya E. P., Mikhailov A. N., Tetel’baum D. I. Silicon nanocrystals in SiO2 matrix obtained by ion implantation under cyclic dose accumulation. Physica E: Low−dimensional Systems and Nanostructures, 2007, vol. 38, no. 1–2, pp. 16—20. DOI: 10.1016/j.physe.2006.12.030
11. Domashevskaya E. P., Storozhilov S. A., Turishchev S. Yu., Kashkarov V. M., Terekhov V. A., Stognei O. V., Kalinin Yu. E., Sitnikov A. V., Molodtsov S. L. XANES and USXES studies of interatomic interactions in (Co41Fe39B20)x(SiO2)1-x nanocomposites. Physics of the Solid State, 2008, vol. 50, N1, pp 139−145.
12. Turishchev S. Yu., Terekhov V. A., Parinova E. V., Korolik O. V., Mazanik A. V., Fedotov A. K. Surface modification and oxidation of Si wafers after low energy plasma treatment in hydrogen, helium and argon. Materials Science in Semiconductor Processing, 2013, vol. 16, no. 6, pp. 1377—1381. DOI: 10.1016/j.mssp.2013.04.020
13. Fedotova J., Saad A., Ivanou D., Ivanova Yu., Fedotov A., Mazanik A., Svito I., Streltsov E., Tyutyunnikov S., Koltunowicz T. N. Gigantic magnetoresistive effect in n−Si/SiO2/Ni nanostructures fabricated by the template−assisted electrochemical deposition. Electrical Review, 2012, vol. 88, pp. 305—308.
14. Zimkina T. M., Fomichev V. A. Ultramyagkaya rentgenovskaya spectroscopiya [Ultrasoft X−ray spectroscopy]. Leningrad: Leningrad State Univ., 1971. 132 p. (In Russ.).
15. Rumsh М. А., Lukirsrii А. P., Schemelev V. N. To the question of a secondary electron multipliers application for soft X−ray spectra studies. Izv. АN USSR. Ser. Phys. = Bulletin of the USSR Academy of Sciences. Physics, 1961, vol. 25, no. 8, pp. 1060—1065 (In Russ.).
16. Stohr J. NEXAFS spectroscopy. Berlin: Springer, 1996. 403 p.
17. Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H. Sampling depth of total electron and fluorescence measurements in Si L− and K−edge absorption spectroscopy. Applied Surface Science, 1996, vol. 99, pp. 303—302.
18. Fine chemicals for research. URL: http://www.alfa.com (accessed: 01.01.2013).
19. Poe Brent T., Romano C., Henderson G. Raman and XANES spectroscopy of permanently densified vitreous silica. J. Non−Crystalline Solids, 2004, vol. 341, pp. 162—169.
20. Henderson Grant S., Neuville Daniel R., Cormier Laurent. An O K−edge XANES study of glasses and crystals in the CaO−Al2O3−SiO2 (CAS) system. Chemical Geology, 2009, vol. 259, pp. 54—62.
21. AkitakaYoshigoe, Akane Agui, Takeshi Nakatani, Tomohiro Matsusita, Yuji Saitoh and Akinari Yokoya. A grating monochromator of BL23SU at SPring−8 covering silicon and oxygen K−edges. J. Synchrotron Radiation, 2001, vol. 8, pp. 502—504.
22. Garvie Laurence A. J., Rez Peter, Alvarez Jose R., Buseck Peter R., Craven Alan J., Brydson Rik. Bonding in alpha−quartz (SiO2): A view of the unoccupied states. American Mineralogist, 2000, vol. 85, pp. 732—738.
Review
For citations:
Turishchev S.Yu., Parinova E.V., Koyuda D.A., Spirin D.E., Nesterov D.N., Romantsov R.V., Fedotovа J.A., Streltsov E.A., Malashchonak M.V., Fedotov A.K. MICROSCOPIC AND X–RAY SPECTROSCOPIC STUDY OF NI ROD MASSIVES IN SILICON DIOXIDE MATRIX. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(1):50-58. (In Russ.) https://doi.org/10.17073/1609-3577-2016-1-50-58