Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Formation of stable induced domains at charged domain boundary in lithium niobate using scanning probe microscopy

https://doi.org/10.17073/1609-3577-2019-1-5-17

Abstract

The influence of a charged domain wall on the formation of the induced domain structures in congruent x-cut lithium niobate crystals (LiNbO3) is studied. By diffusion annealing in air ambient near Curie temperature, as well as infrared annealing in oxygen-free ambient bi- and multidomain ferroelectric structures containing charged domain walls «head-to-head» and «tail-to-tail» were formed. By Kelvin probe mode of atomic force microscopy (AFM) surface potential near the charged domain walls was investigated. We studied surface needle-shaped induced microdomains which were formed in a vicinity of the domain boundary and far from it by applying of voltage to the cantilever being in a contact with the surface of the sample. Dependence of morphology of the induced domain structure on the crystal’s electric conductivity was demonstrated. Screening effect of charged «head-to-head» domain wall on a shape and size of the domain, that was induced near the boundary is shown. We described partition of the single needle-shaped domains formed by AFM cantilever to several microdomains having a shape of several beams based in a common nucleation point. We found an influence of the charged domain wall on the topography of the samples, which consisted in the appearance of a long groove corresponding to the domain boundary after the reducing annealing.

About the Authors

A. M. Kislyuk
National University of Science and Technology MISiS

Alexander M. Kislyuk: 1st Category Engineer

4 Leninsky Prospekt, Moscow 119049, Russia



T. S. Ilina
National University of Science and Technology MISiS

Tatiana S. Ilina: Engineer

4 Leninsky Prospekt, Moscow 119049, Russia



I. V. Kubasov
National University of Science and Technology MISiS

Ilya V. Kubasov: Assistant

4 Leninsky Prospekt, Moscow 119049, Russia



D. A. Kiselev
National University of Science and Technology MISiS

Dmitrii A. Kiselev: Cand. Sci. (Phys.-Math.), Senior Researcher

4 Leninsky Prospekt, Moscow 119049, Russia



A. A. Temirov
National University of Science and Technology MISiS

Alexander A. Temirov: Assistant

4 Leninsky Prospekt, Moscow 119049, Russia



A. A. Turutin
National University of Science and Technology MISiS

Andrey V. Turutin: 1st Category Engineer

4 Leninsky Prospekt, Moscow 119049, Russia



M. D. Malinkovich
National University of Science and Technology MISiS

Mikhail D. Malinkovich: Cand. Sci. (Phys.-Math.), Associate Professor

4 Leninsky Prospekt, Moscow 119049, Russia



A. A. Polisan
National University of Science and Technology MISiS

Andrey A. Polisan: Professor

4 Leninsky Prospekt, Moscow 119049, Russia



Yu. N. Parkhomenko
National University of Science and Technology MISiS JSC «Giredmet»

Yuri N. Parkhomenko: Dr. Sci. (Phys.-Math.), Professor, Head of the Department

4 Leninsky Prospekt, Moscow 119049, Russia

2 Elektrodnaya Str., Moscow 111524, Russia



References

1.  Lengyel K., Péter Á., Kovács L., Corradi G., Pálfalvi L., Hebling J., Unferdorben M., Dravecz G., Hajdara I., Szaller Z., Polgár K. Growth, defect structure, and THz application of stoichiometric lithium niobate. Appl. Phys. Rev., 2015, vol. 2, no. 4, pp. 040601. DOI: 10.1063/1.4929917

2.  Bazzan M., Fontana M. Preface to special topic: Lithium niobate properties and applications: reviews of emerging trends. Appl. Phys. Rev., 2015, vol. 2, no. 4, pp. 040501. DOI: 10.1063/1.4928590

3.  Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev., 2015, vol. 2, no. 4, pp. 040603, DOI: 10.1063/1.4931601

4.  Boes A., Corcoran B., Chang L., Bowers J., Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser & Photonics Reviews, 2018, vol. 12, no. 4, pp. 1700256. DOI: 10.1002/lpor.201700256

5.  Turutin A. V, Vidal J. V, Kubasov I. V, Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars. J. Phys. D: Appl. Phys., 2018, vol. 51, no. 21, pp. 214001. DOI: 10.1088/1361-6463/aabda4

6.  Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. A novel vibration sensor based on bidomain lithium niobate crystal. Acta Phys. Polonica A, 2018, vol. 134, no. 1, pp. 106—108. DOI: 10.12693/APhysPolA.134.106

7.  Zhukov R. N., Ksenich S. V., Kubasov I. V., Timushkin N. G., Temirov A. A., Kiselev D. A., Bykov A. S., Malinkovich M. D., Vygovskaya E. A., Toporova O. V. Studying local conductivity in LiNbO3 films via electrostatic force microscopy. Bull. Russian Academy of Sciences: Phys., 2014, vol. 78, no. 11, pp. 1223—1226. DOI: 10.3103/S106287381411029X

8.  Kubasov I. V., Kislyuk A., Turutin A., Bykov A., Kiselev D., Temirov A., Zhukov R., Sobolev N., Malinkovich M., Parkhomenko Y. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal. Sensors, 2019, vol. 19, no. 3, pp. 614. DOI: 10.3390/s19030614

9.  Parkhomenko Y. N., Sobolev N. A., Kislyuk A. M., Kholkin A. L., Malinkovich M. D., Turutin A. V., Kobeleva S. P., Vidal J. V., Pakhomov O. V., Kubasov I. V. Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields. Appl. Phys. Lett., 2018, vol. 112, no. 26, pp. 262906. DOI: 10.1063/1.5038014

10.  Vidal J. V., Turutin A. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3 crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, vol. 64, no. 7, pp. 1102—1119. DOI: 10.1109/TUFFC.2017.2694342

11.  Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temi­rov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkho­menko Y. N. Vibrational Power Harvester Based on lithium niobate bidomain plate. Acta Phys. Polonica A, 2018, vol. 134, no. 1, pp. 90—92. DOI: 10.12693/APhysPolA.134.90

12.  Chen F., Kong L., Song W., Jiang C., Tian S., Yu F., Qin L., Wang C., Zhao X. The electromechanical features of LiNbO3

13. crystal for potential high temperature piezoelectric applications. J. Materiomics, 2019, vol. 5, no. 1, pp. 73—80. DOI: 10.1016/j.jmat.2018.10.001

14.  Esin A. A., Akhmatkhanov A. R., Shur V. Y. Tilt control of the charged domain walls in lithium niobate. Appl. Phys. Lett., 2019, vol. 114, no. 9, pp. 092901. DOI: 10.1063/1.5079478

15.  Neradovskaia E. A., Neradovskiy M. M., Esin A. A., Chuvakova M. A., Baldil P., De Micheli M. P., Akhmatkhanov A. R., Forget N., Shur V. Y. Domain kinetics during polarization reversal in 36° Y-cut congruent lithium niobate. IOP Conference Series: Materials Science and Engineering, 2018, vol. 443, pp. 012024. DOI: 10.1088/1757-899X/443/1/012024

16.  Campbell M. P., McConville J. P. V., McQuaid R. G. P., Prabhakaran D., Kumar A., Gregg J. M. Hall effect in charged conducting ferroelectric domain walls. Nature Communications, 2016, vol. 7, no. 1, pp. 13764. DOI: 10.1038/ncomms13764

17.  Kuroda A., Kurimura S., Uesu Y. Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields. Appl. Phys. Lett., 1996, vol. 69, no. 11, pp. 1565—1567. DOI: 10.1063/1.117031

18.  Wolba B., Seidel J., Cazorla C., Godau C., Haußmann A., Eng L. M. Resistor network modeling of conductive domain walls in lithium niobate. Advanced Electronic Materials, 2018, vol. 4, no. 1, pp. 1700242. DOI: 10.1002/aelm.201700242

19.  Gureev M. Y., Tagantsev A. K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Phys. Rev. B, 2011, vol. 83, no. 18, pp. 184104. DOI: 10.1103/PhysRevB.83.184104

20.  Strukov B. A., Levanyuk A. P. Ferroelectric Phenomena in Crystals. Berlin; Heidelberg: Springer, 1998. DOI: 10.1007/978-3-642-60293-1

21.  Tasson M., Legal H., Peuzin J. C., Lissalde F. C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie. Phys. Status Solidi (a), 1975, vol. 31, no. 2, pp. 729—737. DOI: 10.1002/pssa.2210310246

22.  Tasson M., Legal H., Gay J. C., Peuzin J. C., Lissalde F. C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point. Ferroelectrics, 1976, vol. 13, no. 1, pp. 479—481. DOI: 10.1080/00150197608236646

23.  Bykov A. S., Grigoryan S. G., Zhukov R. N., Kiselev D. A., Ksenich S. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method. Russian Microelectronics, 2014, vol. 43, no. 8, pp. 536—542. DOI: 10.1134/S1063739714080034

24.  Kubasov I. V., Kislyuk A. . M., Bykov A. S., Malinkovich M. D., Zhukov R. N., Kiselev D. A., Ksenich S. V., Temirov A. A., Timushkin N. G., Parkhomenko Y. N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing. Crystallography Reports, 2016, vol. 61, no. 2, pp. 258—262. DOI: 10.1134/S1063774516020115

25.  Kubasov I. V., Timshina M. S., Kiselev D. A., Malinkovich M. D., Bykov A. S., Parkhomenko Y. N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing. Crystallography Reports, 2015, vol. 60, no. 5, pp. 700—705. DOI: 10.1134/S1063774515040136

26.  Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3. Jpn. J. Appl. Phys., 1977, vol. 16, no. 6, pp. 1069—1070. DOI: 10.1143/JJAP.16.1069

27.  Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices. IEEE 1986 Ultrasonics Symposium, 1986, pp. 719—722. DOI: 10.1109/ULTSYM.1986.198828

28.  Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Appl. Phys. Lett., 1987, vol. 50, no. 20, pp. 1413—1414. DOI: 10.1063/1.97838

29.  Nakamura K., Ando H., Shimizu H. Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer. Jpn. J. Appl. Phys., 1987, vol. 26, no. S2, pp. 198. DOI: 10.7567/JJAPS.26S2.198

30.  Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer. Ferroelectrics, 1989, vol. 93, no. 1, pp. 211—216. DOI: 10.1080/00150198908017348

31.  Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer. Jpn. J. Appl. Phys., 1993, vol. 32, pt 1, no. 5B, pp. 2415—2417. DOI: 10.1143/JJAP.32.2415

32.  Rosenman G., Kugel V. D., Shur D. Diffusion-induced domain inversion in ferroelectrics. Ferroelectrics, 1995, vol. 172, no. 1, pp. 7—18. DOI: 10.1080/00150199508018452

33.  Ievlev A. V., Alikin D. O., Morozovska A. N., Varenyk O. V., Eliseev E. A., Kholkin A. L., Shur V. Y., Kalinin S. V. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystal. ACS Nano, 2015, vol. 9, no. 1, pp. 769—777. DOI: 10.1021/nn506268g

34.  Alikin D. O., Ievlev A. V., Turygin A. P., Lobov A. I., Kalinin S. V., Shur V. Y. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Appl. Phys. Lett., 2015, vol. 106, no. 18, pp. 182902. DOI: 10.1063/1.4919872

35.  Morozovska A. N., Ievlev A. V., Obukhovskii V. V., Fomichov Y., Varenyk O. V., Shur V. Y., Kalinin S. V., Eliseev E. A. Self-consistent theory of nanodomain formation on nonpolar surfaces of ferroelectrics. Phys. Rev. B, 2016, vol. 93, no. 16, pp. 165439. DOI: 10.1103/PhysRevB.93.165439

36.  Starkov A. S., Starkov I. A. Dependence of the ferroelectric domain shape on the electric field of the microscope tip. J. Appl. Phys., 2015, vol. 118, no. 7, pp. 072010. DOI: 10.1063/1.4927800

37.  Morozovska A. N., Eliseev E. A., Kalinin S. V. Domain nucleation and hysteresis loop shape in piezoresponse force spectroscopy. Appl. Phys. Lett., 2006, vol. 89, no. 19, pp. 192901. DOI: 10.1063/1.2378526

38.  Turygin A., Alikin D., Alikin Y., Shur V. The formation of self-organized domain structures at non-polar cuts of lithium niobate as a result of local switching by an SPM tip. Materials, 2017, vol. 10, no. 10, pp. 1143. DOI: 10.3390/ma10101143

39.  Strelcov E., Ievlev A. V., Jesse S., Kravchenko I. I., Shur V. Y., Kalinin S. V. Direct probing of charge injection and polarization-controlled ionic mobility on ferroelectric LiNbO3 surfaces. Advanced Materials, 2014, vol. 26, no. 6, pp. 958—963. DOI: 10.1002/adma.201304002

40.  Bordui P. F., Jundt D. H., Standifer E. M., Norwood R. G., Sawin R. L., Galipeau J. D. Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance. J. Appl. Phys., 1999, vol. 85, no. 7, pp. 3766—3769. DOI: 10.1063/1.369775

41.  Dhar A., Singh N., Singh R. R. K., Singh R. R. K. Low temperature dc electrical conduction in reduced lithium niobate single crystals. J. Phys. Chem. Solids, 2013, vol. 74, no. 1, pp. 146—151. DOI: 10.1016/j.jpcs.2012.08.011

42.  Pawlik A.-S., Kämpfe T., Haußmann A., Woike T., Treske U., Knupfer M., Büchner B., Soergel E., Streubel R., Koitzsch A., Eng L. M. Polarization driven conductance variations at charged ferroelectric domain walls. Nanoscale, 2017, vol. 9, no. 30, pp. 10933—10939. DOI: 10.1039/C7NR00217C

43.  Ievlev A. V., Morozovska A. N., Shur V. Y., Kalinin S. V. Ferroelectric switching by the grounded scanning probe microscopy tip. Phys. Rev. B, 2015, vol. 91, no. 21, pp. 214109. DOI: 10.1103/PhysRevB.91.214109

44.  Turygin A. P., Alikin D. O., Kosobokov M. S., Ievlev A. V., Shur V. Y. Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM tip. ACS Applied Materials & Interfaces, 2018, vol. 10, no. 42, pp. 36211—36217. DOI: 10.1021/acsami.8b10220

45.  Jösch W., Munser R., Ruppel W., Würfel P. The photovoltaic effect and the charge transport in LiNbO3. Ferroelectrics, 1978, vol. 21, no. 1, pp. 623—625. DOI: 10.1080/00150197808237347

46.  Werner C. S., Herr S. J., Buse K., Sturman B., Soergel E., Razzaghi C., Breunig I. Large and accessible conductivity of charged domain walls in lithium niobate. Scientific Reports, 2017, vol. 7, no. 1, pp. 9862. DOI: 10.1038/s41598-017-09703-2

47.  Volk T., Wöhlecke M. Lithium Niobate, Berlin; Heidelberg: Springer, 2008. DOI: 10.1007/978-3-540-70766-0

48.  Chien C. L., Westgate C. R.Eds. The Hall Effect and Its Applications. Boston (MA): Springer, 1980. DOI: 10.1007/978-1-4757-1367-1

49.  Dhar A., Mansingh A. On the correlation between optical and electrical properties in reduced lithium niobate crystals. J. Phys. D: Appl. Phys., 1991, vol. 24, no. 9, pp. 1644—1648. DOI: 10.1088/0022-3727/24/9/019

50.  Imlau M., Badorreck H., Merschjann C. Optical nonlinearities of small polarons in lithium niobate. Appl. Phys. Rev., 2015, vol. 2, no. 4, pp. 040606. DOI: 10.1063/1.4931396

51.  Yatsenko A. V., Yevdokimov S. V., Pritulenko A. S., Sugak D. Y., Solskii I. M. Electrical properties of LiNbO3 crystals reduced in a hydrogen atmosphere. Phys. Solid State, 2012, vol. 54, no. 11, pp. 2231—2235. DOI: 10.1134/S1063783412110339

52.  Saito A., Matsumoto H., Ohnisi S., Akai-Kasaya M., Kuwahara Y., Aono M. Structure of atomically smoothed LiNbO3 (0001) surface. Jpn. J. Appl. Phys., 2004, vol. 43, no. 4B, pp. 2057—2060. DOI: 10.1143/JJAP.43.2057

53.  Sanna S., Schmidt W. G. LiNbO 3 surfaces from a microscopic perspective. J. Phys.: Condensed Matter, 2017, vol. 29, no. 41, pp. 413001. DOI: 10.1088/1361-648X/aa818d


Review

For citations:


Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.A., Malinkovich M.D., Polisan A.A., Parkhomenko Yu.N. Formation of stable induced domains at charged domain boundary in lithium niobate using scanning probe microscopy. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(1):5-17. (In Russ.) https://doi.org/10.17073/1609-3577-2019-1-5-17

Views: 1112


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)