Structural formation aspects of Zn–containing nanoparticles synthesized by ion implantation in Si (001) followed by thermal annealing
https://doi.org/10.17073/1609-3577-2016-4-262-270
Abstract
This work deals with structural transformations in the near− surface layers of silicon after ion beam synthesis of zinc−containing nanoparticles. Phase formation after Zn + ion implantation and two−stage O+ and Zn+ ion implantation followed by thermal annealing in a dry oxygen atmosphere was studied. To avoid amorphization, we heated the substrate to 350 °C during the implantation. After implantation, we annealed the samples for 1 h in a dry oxygen atmosphere at 800 °C. The structure of the surface silicon layers was examined by X−ray diffraction and transmission electron microscopy. We show that a disturbed near surface layer with a large concentration of radiation induced defects appears as a result of 50 keV Zn+ ion implantation. In the as−implanted specimens, metallic Zn nanoparticles about 25 nm in size formed at a depth of 40 nm inside the damaged silicon layer. Subsequent annealing at 800 °C in a dry oxygenatmosphere produced structural changes in the defect layer, formed Zn2SiO4 nanoparticles at a depth of 25 nm with an average size of 3 nm and oxidized the existing Zn particles to form the Zn2SiO4 phase. The oxidation of the metallic Zn nanoparticles starts from the surface of the particles and leads to the formation of particles with a “core−shell” structure. Analysis of the phase composition of the silicon layer after O+ and Zn+ ion two−stage implantation showed that Zn and Zn2SiO4 particles formed in the as−implanted state. Subsequent annealing at 800 °C in a dry oxygen atmosphere increases the particle size but does not change the phase composition of the near surface layer. ZnO nanoparticles were not observed under the experimental ion beam synthesis conditions..
About the Authors
K. B. EidelmanRussian Federation
Ksenia B. Eidelman — Assistant.
4 Leninsky Prospekt, Moscow 119049.
N. Yu. Tabachkova
Russian Federation
Nataliya Yu Tabachkova — Cand. Sci (Phys.−Math.), Associate Professor.
4 Leninsky Prospekt, Moscow 119049.
K. D. Shcherbachev
Russian Federation
Kirill D. Scherbachev —Cand. Sci (Phys.− Math.), Lead Engineer.
4 Leninsky Prospekt, Moscow 119049.
Yu. N. Parkhomenko
Russian Federation
Yuri N. Parkhomenko — Dr. Sci. (Phys.−Math.), Professor, Head of Department of the Material Science of Semiconductors and Dielectrics.
4 Leninsky Prospekt, Moscow 119049.
V. V. Privesentsev
Russian Federation
Vladimir V. Privesentsev — Cand. Sci. (Eng.), Senior Researcher.
34 Nakhimovsky Prospekt, Moscow 117218.
D. M. Migunov
Russian Federation
Denis M. Migunov — Cand. Sci (Eng.), Lead Engineer.
1 Shokin Sq., Zelenograd, Moscow 124498.
References
1. Aoki T., Hatanaka Y., Look D. C. ZnO diode fabricated by excimer−laser doping. Appl. Phys. Lett., 2000, vol. 76, no. 22, pp. 3257. DOI: 10.1063/1.126599
2. Cao H., Zhao Y. G., Ho S. T., Seelig E . W., Wang Q. H., Chang R. P. H. Random laser action in semiconductor powder. Phys. Rev. Lett., 1999, vol. 82, no. 11–15, pp. 2278. DOI: 10.1103/PhysRev-Lett.82.2278
3. Kawasaki M., Ohtomo A., Ohkubo I., Koinuma H., Tang Z. K., Yu P., Wong G. K. L., Zhang B. P., Segawa Y. Excitonic ultraviolet laser emission at room temperature from naturally made cavity in ZnO nanocrytal thin films. Materials Science and Engineering: B, 1998, vol. 56, no. 2–3, pp. 239—245. DOI: 10.1016/S0921-5107(98)00248-7
4. Karazhanov S. Zh., Ravindran P., Fjellvåg H., Svensson B. G. Electronic structure and optical properties of ZnSiO3 and Zn2SiO4. J. Appl. Phys., 2009, vol. 106, no. 12, pp. 123701. DOI: 10.1063/1.3268445
5. Yongning He, Xiaolong Zhao, Xuyang Wang, Liang Chen, Wenbo Peng, Xiaoping Ouyang. Characterizations of an X−ray detector based on a Zn2SiO4 film. Sensors and Actuators A, 2015, vol. 236, pp. 98—103. DOI: 10.1016/j.sna.2015.08.022
6. Wen Chuang Wang, Yong Tao Tian, Kun Li, Er Yang Lu, Dong Shang Gong, Xin Jian Li. Capacitive humidity−sensing properties of Zn2SiO4 film grown on silicon nanoporous pillar array. Appl. Surface Sci., 2013, vol. 273, pp. 372—376 DOI: 10.1016/j.apsusc.2013.02.045
7. Yen W. M., Shionoya S., Yamamoto H. Phosphor Handbook. Boca Raton: CRC Press, 2006. 1080 p.
8. Chang I. F., Sai−Halasz G. A., Shafer M. W. Energy storage effect and retrieval in manganese doped zinc silicate. J. Luminescence, 1980, vol. 21, no. 3, pp. 323—327. DOI: 10.1016/0022-2313(80)90011-3
9. Kong D. Y., Yu M., Lin C. K., Liu X. M., Lin J., Fang J. Sol−gel synthesis and characterization of Zn2SiO4:Mn2SiO2 spherical coreshell particles. J. Electrochem. Soc., 2005, vol. 152, no. 9, pp. H146—H151. DOI: 10.1149/1.1990612
10. Osvet A., Batentschuk M., Milde M., Lundt N., Gellermann C., Dembski S., Winnacker A., Brabec Ch. J. Photoluminescent and storage properties of photostimulable core/shell type silicate nanoparticles. Phys. Status Solidi C, 2013, vol. 10, no. 2, pp. 180—184. DOI: 10.1002/pssc.201200515
11. Pal U., Santiago P. Controlling the morphology of ZnO nanostr uctures in a low−temperature hydrother mal process. J. Phys. Chem. B, 2005, vol. 109, no. 32, pp. 15317—15321. DOI: 10.1021/jp052496i
12. An−Jen Cheng, Yonhua Tzeng, Yi Zhou, Minseo Park, Tsung−Hsueh Wu, Curtis Shannon, Dake Wang, Wonwoo Lee. Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye−sensitized solar cell fabrication. Appl. Phys. Lett., 2008, vol. 92, no. 9, pp. 092113. DOI: 10.1063/1.2889502
13. Haikuo Sun, Ming Luo, Wenjian Weng, Kui Cheng, Piyi Du, Ge Shen, Gaorong Han. Position and density control in hydrothermal growth of ZnO nanorod arrays through pre−formed micro/nanodots. Nanotechnology, 2008, vol. 19, no. 39, pp. 395602. DOI: 10.1088/0957-4484/19/39/395602
14. Amekura H., Sakuma Y., Kono K., Takeda Y., Kishimoto N., Buchal Ch. Luminescence from ZnO nanoparticles/SiO2 fabricated by ion implantation and thermal oxidation. Physica B: Condensed Matter., 2006, vol. 376–377, pp. 760—763. DOI: 10.1016/j.physb.2005.12.190
15. Amekura H., Umeda N., Sakuma Y., Plaksin O. A., Takeda Y., Kishimoto N. Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect−free luminescence. Appl. Phys. Lett., 2006, vol. 88, no. 15, pp. 153119. DOI: 10.1063/1.2193327
16. Pandey B., Poudel P. R., Weathers D. L. Formation of ZnO Nanoparticles by ZnO− and O−dual beam ion implantation and thermal annealing. Jpn. J. Appl. Phys., 2012, vol. 51, no. 11S, pp. 11PG03. DOI: 10.1143/JJAP.51.11PG03
17. Amekura H., Umeda N., Boldyryeva H., Kishimoto N., Buchal Ch., Mantl S. Embedment of ZnO nanoparticles in SiO2 by ion implantation and low−temperature oxidation. Appl. Phys. Lett., 2007, vol. 90, no. 083102, pp. 083102. DOI: 10.1063/1.2709509
18. Kuiri P. K., Mahapatra D. P. Effects of annealing atmosphere on ZnO− ions−implanted silica glass: synthesis of Zn and ZnO nanoparticles. J. Phys. D: Appl. Phys., 2010, vol. 43, no. 39, pp. 395404. DOI: 10.1088/0022-3727/43/39/395404
19. Muntele I., Muntele C., Thevenard P., Ila D. ZnO nanocluster formation in SiO2 by low energy ion implantation. Surface and Coatings Technology, 2007, vol. 201, no. 19–20, pp. 8557—8559. DOI: 10.1016/j.surfcoat.2006.01.086
20. Lee J. K., Tewell C. R., Schulze R. K., Nastasi M., Hamby D. W., Lucca D. A., Jung H. S., Hong K. S. Synthesis of ZnO nanocrystals by subsequent implantation of Zn and O species. Appl. Phys. Lett., 2005, vol. 86, no. 18, pp. 183111. DOI: 10.1063/1.1906304
21. Pandey B., Weathers D. L. Temperature dependent formation of ZnO and Zn2SiO4 nanoparticles by ion implantation and thermal annealing. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, vol. 332, pp. 359—363. DOI: 10.1016/j.nimb.2014.02.096
22. Edelstein A. S., Cammarata R. C. Nanomaterials: Synthesis, Properties and Applications. New York; London: Taylor and Francis, 1996. 598 p.
23. Jagadish C., Pearton S. J. Zinc oxide bulk, Thin films and nanostructures: processing, properties and applications. Oxford: Elsevier, 2006. 600 p. DOI: 10.1016/B978-008044722-3/50000-2
24. Colvin, V. L. Light−emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer / V. L. Colvin, M. C. Schlamp, A. P. Alivisatos // Nature. − 1994. − V. 370. − P. 354—357. DOI: 10.1038/370354a0
25. Interactions of ions with matter. URL: http://www.srim.org
26. Eidelman K. B., Shcherbachev K. D., Tabachkova N. Y., Privezentsev V. V. Formation of nanoparticles containing zinc in Si(001) by ion−beam implantation and subsequent annealing. Journal of Surface Investigation: X−Ray, Synchrotron and Neutron Techniques, 2016. vol. 10, no. 3, pp. 597—602. DOI: 10.1134/S102745101603023X
27. Parsons J. R., Balluffi R. W. Displacement spike crystallization of amorphous germanium during irradiation. J. Phys. Chem. Solids., 1964, vol. 25, no. 3, pp. 263—272. DOI: 10.1016/0022-3697(64)90106-4
28. Milnes A. G. Deep impurities in semiconductors. New York: Wiley, 1973. 544 p.
29. The Materials Project. URL: https://materialsproject.org
30. Kubaschewski O., Alcock C., Spencer P. Materials thermochemistry. Oxford; New York: Pergamon Press, 1993. 363 p.
Review
For citations:
Eidelman K.B., Tabachkova N.Yu., Shcherbachev K.D., Parkhomenko Yu.N., Privesentsev V.V., Migunov D.M. Structural formation aspects of Zn–containing nanoparticles synthesized by ion implantation in Si (001) followed by thermal annealing. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2016;19(4):262-270. (In Russ.) https://doi.org/10.17073/1609-3577-2016-4-262-270