Calculation of the grain potential barrier in the poly− and nanocrystalline semiconductors
https://doi.org/10.17073/1609-3577-2017-2-122-128
Abstract
The distribution of potential and parameters of potential barrier in semiconductor crystallite was calculated numerically. The calculation was carried out in spherical crystallite with evenly distributed donors and surface states. The calculation assumed that the surface charge is screened by both ionized donors and free electrons, the contribution of which cannot be neglected in semiconductors with high concentration of free electrons. The height of potential barrier is shown to nonmonotonically depend on the concentration of donors. The dependence of height of potential barrier on the concentration of donors may be divided into two part. One part of dependence describes the fully depleted crystallite and the second part describes the party depleted crystallite. On the first part the height of potential barrier increases with the donor concentration but on the second part the height of potential barrier decreases. The height of the potential barrier increases with increasing of concentration of surface states. The possibility of existing of potential barriers is estimated in nano− and polycrystalline metal oxide semiconductors used as sensitive layers of gas sensors. It is concluded that if the radius of crystal grains in metal oxide semiconductors does not exceed 10 nm, the explanation of the sensitivity of the sensor to gas by using a commonly barrier model seems unlikely. It is demonstrated that shape of crystallite and the contribution of free electrons to screening of surface charge have to be taken into account to calculation of width of potential barrier.
Keywords
About the Authors
A. S. IlinRussian Federation
Faculty of Physics
V. M. Gololobov
Russian Federation
Faculty of Physics
E. A. Forsh
Russian Federation
P. A. Forsh
Russian Federation
Faculty of Physics
P. K. Kashkarov
Russian Federation
Faculty of Physics
References
1. Zhang J., Liu X., Neri G., Pinna N. Nanostructured Materials for Room−Temperature Gas Sensors. Adv. Mater., 2016, vol. 28, pp. 795—831. DOI: 10.1002/adma.201503825
2. Kirillin M. Y., Sergeeva E. A., Agrba P. D., Krainov A. D., Ezhov A. A., Shuleiko D. V., Kashkarov P. K., Zabotnov S. V. Laser− ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography. Laser Physics, 2015, vol. 25, pp. 75604. DOI: 10.1088/1054-660X/25/7/075604
3. Polster S., Jank M. P. M., Frey L. Correlation of film morphology and defect content with the charge−carrier transport in thin−film transistors based on ZnO nanoparticles. J. Appl. Phys., 2016, vol. 119, pp. 024504. DOI: 10.1063/1.4939289
4. Kashaev F. V., Kaminskaya T. P., Zabotnov S. V., Golovan L. A. Structural properties of silicon nanoparticles obtained via femtosecond laser ablation in gases at different pressures. Optical and Quantum Electronics, 2016, vol. 48, pp. 348. DOI: 10.1007/ s11082-016-0617-8
5. Korotcenkov G., Brinzari V., Cho B. K. In2O3 and SnO2 Based Thin Film Ozone Sensors: Fundamentals. J. Sensors, 2016. Article 3816094. DOI: 10.1155/2016/3816094
6. Marques V. P. B., Cilense M., Bueno P. R., Orlandi M. O., Varela J. A., Longo E. Qualitative evaluation of active potential barriers in SnO2−based polycrystalline devices by electrostatic force microscopy. Appl. Phys. A, 2007, vol. 87, pp. 793—796. DOI: 10.1007/ s00339-007-3922-z
7. Tsurekawa S., Kido K., Watanabe T. Measurements of potential barrier height of grain boundaries in polycrystalline silicon by Kelvin probe force microscopy. Philosophical Magazine Letters, 2005, vol. 85, pp. 41—49. DOI: 10.1080/09500830500153859
8. Lecomber P. G., Willeke G., Spear W. E. Some new results on transport and density of state distribution in glow discharge microcrystalline silicon. J. Non−Crystalline Solids, 1983, vol. 59–60, pp. 795—798. DOI: 10.1016/0022-3093(83)90290-9
9. Seto J. Y. W. The electrical properties of polycrystalline silicon films. J. Appl. Phys., 1975, vol. 46, pp. 5247—5254. DOI: 10.1063/1.321593
10. Ni J., Arnold E. Electrical conductivity of semi−insulating polycrystalline silicon and its dependence upon oxygen content. Appl. Phys. Lett., 1981, vol. 39, pp. 554—556. DOI: 10.1063/1.92791
11. Weis T., Lipperheide R., Wille U., Brehme S., Kanschat P., Fuhs W. Barrier−limited carrier transport in highly n−doped mc− Si:H thin films. J. Non−Crystalline Solids, 2002, vol. 299, pp. 380—384. DOI: 10.1016/S0022-3093(01)00954-1
12. Kara I., Atilgan A., Serin T., Yildiz A. Effects of Co and Cu dopants on the structural, optical, and electrical properties of ZnO nanocrystals. J. Materials Science: Materials in Electronics, 2017, vol. 28, pp. 6088—6092. DOI: 10.1007/s10854-016-6285-4
13. Ilin A., Forsh E., Fantina N., Martyshov M., Forsh P., Kashkarov P. Influence of In2O3 Nanocrystal Size on the Conductivity and Photoconductivity in the NO2 Atmosphere. J. Nanoelectronics and Optoelectronics, 2015, vol. 10, pp. 680—682. DOI: 10.1166/ jno.2015.1731
14. Grossmann K., Weimar U., Barsan N. Semiconducting Metal Oxides Based Gas Sensors, Tuebingen, Germany, Elsevier Inc., 2013, 477 p. DOI: 10.1016/B978-0-12-396489-2.00008-4
15. Lu F., Liu Y., Dong M., Wang X. Nanosized tin oxide as the novel material with simultaneous detection towards CO, H2 and CH4. Sensors and Actuators B: Chemical, 2000, vol. 66, pp. 225—227. DOI: 10.1016/S0925-4005(00)00371-3
16. Belysheva T. V., Ikim M. I., Ilin A. S., Kashkarov P. K., Martyshov M. N., Paltiel Y., Trakhtenberg L. I., Fantina N. P., Forsh P. A. Features of the Electrical and Photoelectrical Properties of Nanocrystalline Indium and Zinc Oxide Films. Russian Journal of Physical Chemistry B, 2016, vol. 10, pp. 810—815. DOI: 10.1134/ S1990793116050171
17. Ilin A., Martyshov M., Forsh E., Forsh P., Rumyantseva M., Abakumov A., Gaskov A., Kashkarov P. UV effect on NO2 sensing properties of nanocrystalline In2O3. Sensors and Actuators B: Chemical, 2016, vol. 231, pp. 491—496. DOI: 10.1016/j.snb.2016.03.051
18. Ilyin A. S., Fantina N. P., Martyshov M. N., Forsh P. A., Vorontsov A. S., Rumyantseva M. N., Gaskov A. M., Kashkarov P. K. Voltage effect on the sensitivity of nanocrystalline indium oxide to nitrogen dioxide under ultraviolet irradiation. Technical Physics Letters, 2015, vol. 41, pp. 252—254. DOI: 10.1134/S1063785015030074
19. Forsh E. A., Abakumov A. M., Zaytsev V. B., Konstantinova E. A., Forsh P. A., Rumyantseva M. N., Gaskov A. M., Kashkarov P. K. Optical and photoelectrical properties of nanocrystalline indium oxide with small grains. Thin Solid Films, 2015, vol. 595, pp. 25—31. DOI: 10.1016/j.tsf.2015.10.053
20. Khiabani P. S., Marzbanrad E., Zamani C., Riahifar R., Raissi B. Fabrication of In2O3 based NO2 gas sensor through AC− electrophoretic deposition. Sensors and Actuators B: Chemical, 2012, vol. 166–167, pp. 128–134. DOI: 10.1016/j.snb.2012.01.028
21. Ayeshamariam A., Bououdina M., Sanjeeviraja C. Optical, electrical and sensing properties of In2O3 nanoparticles. Materials Science in Semiconductor Processing, 2013, vol. 16, pp. 686—695. DOI: 10.1016/j.mssp.2012.12.009
22. Rumyantseva M. N., Gaskov A. M., Rosman N., Pagnier T., Morante J. R. Raman surface vibration modes in nanocrystalline SnO2: correlation with gas sensing performances. Chemistry of Materials, 2005, vol.17, pp. 893—901. DOI: 10.1021/cm0490470
23. Chizhov A. S., Rumyantseva M. N., Vasiliev R. B., Filatova D. G., Drozdov K. A., Krylov I. V., Marchevsky A. V., Karakulina O. M., Abakumov A. M., Gaskov A. M. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films, 2016, vol. 618, pp. 253—262. DOI: 10.1016/j.tsf.2016.09.029
24. Belysheva T. V., Gatin A.K., Grishin M. V., Ikim M. I., Matyuk V. M., Sarvadii S. Y., Trakhtenberg L. I., Shub B. R. Structure and physicochemical properties of nanostructured metal oxide films for use as the sensitive layer in gas sensors. Russian Journal of Physical Chemistry B, 2015, vol. 9, pp. 733—742. DOI: 10.1134/ S1990793115050048
25. Bonch−Bruevich V. L., Kalashnikov S. G. Fizika poluprovodnikov, Moskva, Nauka, 1977.
26. Korotcenkov G. The role of morphology and crystallographic structure of metal oxides in response of conductometric−type gas sensors. Materials Science and Engineering R: Reports. 2008, vol. 61, pp. 1—39. DOI: 10.1016/j.mser.2008.02.001
27. Bierwagen O. Indium oxide — a transparent, wide−band gap semiconductor for (opto)electronic applications. Semiconductor Science and Technology, 2015, vol. 30, pp. 24001. DOI: 10.1088/0268- 1242/30/2/024001
28. Barsan N., Weimar U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceramics, 2001, vol. 7, pp. 143—167. DOI: 10.1023/A:1014405811371
29. Gerasimov G. N., Gromov V. F., Ilegbusi O. J., Trakhtenberg L. I. The mechanisms of sensory phenomena in binary metal−oxide nanocomposites. Sensors and Actuators B: Chemical, 2017, vol. 240, pp. 613—624. DOI: 10.1016/j.snb.2016.09.007
30. Ansari S. G., Boroojerdian P., Sainkar S. R., Karekar R. N., Aiyer R. C., Kulkarni S. K. Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films, 1997, vol. 295, pp. 271—276. DOI: 10.1016/S0040-6090(96)09152-3
Review
For citations:
Ilin A.S., Gololobov V.M., Forsh E.A., Forsh P.A., Kashkarov P.K. Calculation of the grain potential barrier in the poly− and nanocrystalline semiconductors. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(2):122-128. (In Russ.) https://doi.org/10.17073/1609-3577-2017-2-122-128