Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Silicon wafer strain under local photonic annealing

https://doi.org/10.17073/1609-3577-2017-2-142-147

Abstract

The effect of photon annealing on the occurrence of deformations in the crystal structure of boron−doped silicon wafers produced by the Czochralski (Cz−Si) was studied by the method of triple−X−ray diffraction. It was found that the traditional annealing of silicon wafers with polished surfaces on both sides by halogen lamps in Photonic Annealing (PA) and rapid thermal annealing modes (RTA) leads to compression deformation. The same process with the use of original photo− mask, which allows local processing produces multiple, spatially separated regions of the plate produced by Lосаl Photonic Annealing (LPA) at relatively low temperatures (less than 55 °C), gives rise to a tensile strain. This established effect is not observed if on the back side of the plates there is mechanical gettering layer. The mechanism explaining the experimental results can be used in the formation of the charge pump in the structure of the photo electric converters (PEC).

About the Authors

V. V. Starkov
Institute of Microelectronics Technology and High Purity Materials RAS
Russian Federation
Cand. Sci. (Eng.), Senior Researcher


E. A. Gosteva
National University of Science and Technology «MISIS»
Russian Federation
Assistant


D. V. Irzhak
Institute of Microelectronics Technology and High Purity Materials RAS
Russian Federation
Cand. Sci. (Phys.–Math.), Deputy Directors


D. V. Roshchupkin
Institute of Microelectronics Technology and High Purity Materials RAS
Russian Federation

Dr. Sci. (Phys.–Math.)



References

1. Kravchenko V. A., Starkov V. V., Abrosimov N. V., Abrosimova V. N. Diffusion alloying of silicon by boron and phosphorous in conditions of fast thermal annealing. Elektron. Tekh., Ser. Mater., 1989, no. 4, pp. 20—23. (In Russ.)

2. Şişianu S. T., Şişianu T. S., Railean S. K. Shallow p−n junctions formed in silicon using pulsed photon annealing. Semiconductors, 2002, vol. 36, no. 5, pp. 581—587. DOI: 10.1134/1.1478552

3. Gusev V. A., Starkov V. V., Teterskii A. V. Solar cells with a charge pump: theoretical prospects and technological aspects of the application. Russian Microelectronics, 2015, vol. 44, no. 8, pp. 569— 574. DOI: 10.1134/S1063739715080065

4. Anizan S., Leong C. S., Yusri K. L., Amin N., Zaidi S., Sopian K. The effect of rapid thermal annealing towards the performance of screen−printed Si solar cell. Am. J. Appl. Sci., 2011, vol. 8, no. 3, pp. 267—270. DOI: 10.3844/ajassp.2011.267.270

5. Stein H. J., Hahn S. K., Shatas S. C. Rapid thermal annealing and regrowth of thermal donors in silicon. J. Appl. Phys., 1986, vol. 59, no. 10, pp. 3495—3502. DOI: 10.1063/1.336820

6. Mezhennyi M. V., Milvidskii M. G., Resnick V. J. Influence of rapid thermal annealing on the specific features of defect generation in silicon wafers during the formation of effective internal getters. J. Synch. Investig., 2009, vol. 3, no. 4, pp. 612—619. DOI: 10.1134/ S1027451009040223

7. Park J. G., Park H. K., Kwack K. D., Hong J. H. Effect of gas ambient at high temperature rapid thermal annealing on oxygen precipitate formation and crystal originated particle dissolution. J. Korean Phys. Soc., 2001, vol. 39, pp. S327—S332.

8. Cui Can, Yang De−Ren, Ma Xiang−Yang, Fu Li−Ming, Fan Rui−Xin, Que Duan−Lin. Oxygen precipitation within denuded zone founded by rapid thermal processing in Czochralski silicon wafers. Chinese Phys. Lett., 2005, vol. 22, no. 9, pp. 2407—2410. DOI: 10.1088/0256-307X/22/9/074

9. Gusev V. A., Starkov V. V. Solar cells with a charge pump. Trudy XII Mezhdunar. nauchnoprakt. konf. Fundamental’nye i prikladnye issledovaniya, razrabotka i primenenie vysokikh tekhnologii v promyshlennosti = Proceedings of the 12th International Scientific−Practical Conference on Fundamental and Applied Studies, Development and Applicaton of Higher Technologies in Industry. St. Petersburg, 2011, vol. 2, pp. 157—158. (In Russ.)

10. Starkov V. V., Gusev V. A., Kulakovskaya N. O., Gosteva E. A., Parkhomenko Yu. N. Formation a charge pump in the structure of phototransformators. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronics Engineering, 2015, vol. 18, no. 4, pp. 279—284. (In Russ.). DOI: 10.17073/1609-3577-2015- 4-279-284

11. Gusev V. A., Starkov V. V., Shopheristov S. E. Defects− impurities engineering for manufacture silicon solar cells with charge pumps. Vestn. SevNTU, Ser. Inform., Elektron., Svyaz’, 2014. no. 149, pp. 16—23. (In Russ.). URL: http://wel.net.ua/Russian/PDF/ vsntui.pdf

12. Gosteva E. A., Gusev V. A., Starkov V. V., Gerasimenko N. N. Defect−impurity engineering in the formation of the structure of solar cells with charge pumps. Materiali I Vserossiiskoi nauchnoi konferencii «Nanostrukturirovannie materiali i preobrazovatelnie ustroistva dlya solnechnih elementov 3−go pokoleniya». Cheboksary, 2013, pp. 63—65. (In Russ.). URL: http://nanosolar−conf. ru/filestore/сборник конференции Chuv−Nano−Solar_2013.pdf

13. Gosteva E. A. Investigation of the instrument structures of photoconverters based on charge pumps formed by the methods of defect−impurity engineering. III ezhegodnyi rossiisko−yaponskii nauchno−tekhnicheskii seminar «Sovremennye metody issledovaniya struktury materialov i ikh primenenie v materialovedenii» = III Annual Russian−Japanese Scientific−Technical Seminar «Modern Methods for Researching the Structure of Materials and Their Application in Materials Science». Moscow, 2013, no. 1, pp. 44—47.

14. Gosteva E. A. Optimized instrument structure of a photoconverter based on charge pumps, formed by methods of defect− impurity engineering. Sbornik tezisov 69 Dni nauki studentov NITU «MISiS». Moscow, 2014, pp. 601—602. (In Russ.). URL: http:// sciencedays.misis. ru/69_DNI_all.pdf

15. Emtsev V. V., Andreev B. A., Davydov V. Yu., Poloskin D. S., Oganesyan G. A., Kryzhkov D. I., Shmagin V. B., Emtsev V. V., Misiuk A., Londos C. A. Stress−induced changes of thermal donor formation in heat−treated Czochralski−grown silicon. Physica B: Condensed Matter., 2003, vol. 340–342, pp. 769—772. DOI: 10.1016/j. physb.2003.09.118

16. Bowen D. K., Tanner B. K. High resolution X−ray diffractometry and topography. CRC Press, 2005, 252 p.

17. Scherbachev K. D., Voronova M. I., Bublik V. T., Deryabin A. N., Khokhlov A. I., Vygovskays E. A., Toropova O. V. X−ray diffraction quality control of leucosapphire wafer surface. Izvestiya vuzov. Materialy elektronnoi tekhniki = Materials of Electronics Engineering, 2009, no. 2, pp. 44—49.

18. Seebauer E. G., Kratzer M. C. Charged Semiconductor Defects. Structure. Termodynamics and Diffusion. London: Springer− Verlag, 2009, 294 p. DOI: 10.1007/978-1-84882-059-3

19. Voronkov V. V., Faster R. Nucleation of oxide precipitates in vacancy−containing silicon. J. Appl. Phys., 2002, vol. 91, no. 9, pp. 5802—5810. DOI: 10.1063/1.1467607

20. Herguth A., Scubert G., Kaes M., Hahn G. Avoiding boron−oxygen related degradation in highly boron doped Cz silicon. Proc. 21st European Photovoltaic Solar Energy Conference. Munich: WIP−Renewable Energies, 2006, pp. 530—537. URL: http://kops. uni−konstanz.de/bitstream/handle/123456789/42206/Herguth_2− 6ddiwpp4szjy1.pdf?sequence=3&isAllowed=y


Review

For citations:


Starkov V.V., Gosteva E.A., Irzhak D.V., Roshchupkin D.V. Silicon wafer strain under local photonic annealing. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(2):142-147. (In Russ.) https://doi.org/10.17073/1609-3577-2017-2-142-147

Views: 903


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)