The getters in silicon
https://doi.org/10.17073/1609-3577-2018-1-5-17
Abstract
The processes of gettering of fast-diffusing metal impurities and structure defects in silicon, mainly used in the production of integrated circuits, power high-voltage devices, nuclear-doped silicon, are considered. The getters based on structural defects and gas-phase getters based on chlorine-containing compounds are analyzed. It is noted that for the formation of getters on the basis of structural defects, it is necessary to create internal sources for generation of dislocations and formation of precipitate — dislocation clusters. It is shown that dislocations are generated in the mouths of microfractures, which then form a sedentary dislocation grid on the non-working side of the plates. In the second case, defects are created in the area of the plate adjacent to the active layer of the electronic component. The process of creating an internal getter is based on the decomposition of a supersaturated solid oxygen solution in silicon, due to which a complex defect medium consisting of various precipitate-dislocation clusters is formed in the crystal. The packing defect as oxide precipitate with a cloud of Frank’s loops is formed. Two variants of creating an internal getter are considered — first is associated with the distillation of an oxygen impurity from the near-surface region of the plate, the second is associated with a fine adjustment of the distribution of vacancies along the plate thickness. The analysis of the influence of the getter as the defect structure reducing the magnitude of mechanical stress of the beginning of the generation of dislocations, which ultimately can determine the mechanical strength of the silicon wafer.
This paper also considers the mechanism of gas-phase medium impurities and defects gettering with the addition of chlorine-containing compounds. It is shown that at elevated temperatures, due to the interaction of silicon atoms with chlorine in the near-surface region of the plate, it is possible to create vacancies that penetrate the sample volume with some probability. As a result, the case DСv > 0, DCi £ 0 is realized, that leads to a change in the composition of microdefects and their density. The examples of practical application of heat treatment in chlorine-containing atmosphere silicon wafer during application of the oxide film, in the case of the target the need for dissolution of the microdefects and of the withdrawal of fast diffusing impurities from the crystal volume, and to prevent the formation of generation-recombination centers in the manufacturing process of devices and in a nuclear doping silicon.
About the Author
V. A. KharchenkoRussian Federation
Vyacheslav A. Kharchenko: Dr. Sci. (Eng.), Senior Researcher
40 Vavilov Str., Moscow 119333
References
1. Pilipenko V. A., Gorushko V. A., Petlitskiy A. N., Ponaryadov V. V., Turtsevich A. S., Shvedov S. V. Methods and mechanisms of gettering of silicon structures in the production of integrated circuits. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature= Technology and design in electronic equipment, 2013, no. 2–3, pp. 43—57. (In Russ.)
2. Grafutin V. I., Prokop’ev E. P., Timoshenkov S. P. Gettering and synergetic approaches to the problem of silicon and siliconbased materials. Review. Nanotechnology Research and Practice, 2014, vol. 1, no. 1, pp. 4—26. (In Russ.). DOI: 10.13187/ejnr.2014.1.4
3. Prokopiev E. P. On gettering and synergistic approaches in the problem of silicon. Review. Nauchnaya tsifrovaya biblioteka PORTALUS.RU. URL: http://portalus.ru/modules/science/rus_readme.php?subaction=showfull&id=1260858000&archive=1480160666&start_from=&ucat=& (accessed: 03.09.2018). (In Russ.)
4. Ravi K. V. Imperfections and impurities in semiconductor silicon. New York: Wiley, 1981, 379 p.
5. Sah C.-T., Robert N. N., Shockley W. Carrier generation and recombination in p-n junctions and p-n junction characteristics. Proc. IRE, 1957, vol. 45, no. 9, pp. 1228—1243. DOI: 10.1109/JRPROC.1957.278528
6. D’yachkov A. M., Litvinov Yu. M., Petrov S. V., Selivanova N. N., Khokhlov A. I., Yakovlev S. L. Gettering processes in the production technology of silicon wafers. Elektronnaya promyshlennost, 2003, no. 3, pp. 33—40. (In Russ.)
7. Milvidsky M. G. Contaminant gettering in dislocationfree silicon wafers. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2009, no. 1, pp. 6—12. (In Russ.)
8. Plyatsko S. V. Generation of bulk defects in some semiconductors by laser radiation in the transparency region of the crystal. Semiconductors, 2000, vol. 34, no. 9, pp. 1004—1010. DOI: 10.1134/1.1309406
9. Vintsents S. V., Zoteev A. V., Plotnikov G. S. Threshold of inelastic strain formation in Si and GaAs surface layers under multiple pulsed laser irradiation. Semiconductors, 2002, vol. 36, no. 8, pp. 841—844. DOI: 10.1134/1.1500456
10. Cohen M. G., Kaplan R. A., Arthurs E. G. Micromaterials processing. Proc. IEEE, 1982, vol. 70, no. 6, pp. 545—555. DOI: 10.1109/PROC.1982.12353
11. Hayafuji Y., Yanada T., Aoki Y. Laser damage gettering and its application to lifetime improvement in silicon. J. Electrochem. Soc., 1981, vol. 128, no. 9, pp. 1975—1980. DOI: 10.1149/1.2127778
12. Olikhovskii S., Belova M. M., Kochelab E. V. Kinetics of nucleation and growth of microdefects in crystals. Usp. Fiz. Met., 2006, vol. 7, no. 3, pp. 135—171. (In Russ.). URI: http://dspace.nbuv. gov.ua/handle/123456789/125801
13. Falster R., Voronkov V. V. Rapid thermal processing and control of oxygen precipitation behavior in silicon wafers. Mater. Sci. Forum, 2008, vol. 573–574, pp. 45—60.
14. Vasilév Yu. B., Verezub N. A., Mezhennyi M. V., Prosolovich V. S., Prostomolotov A. I., Reznik V. Ya. Features of defect formation under the thermal treatment of dislocationfree single crystal largediameter silicon wafers with the specified distribution of oxygencontaining gettering centers in the bulk. Russian Microelectronics, 2013, vol. 42, no. 8, pp. 467—476. DOI: 10.1134/S1063739713080155
15. Falster R., Voronkov V. V., Quast F. On the properties of the intrinsic point defects in silicon: A perspective from crystal growth and wafer processing. Phys. Status Solidi (b), 2000, vol. 222, no. 1, pp. 219—244. DOI: 10.1002/1521-3951(200011)222:1<219::AIDPSSB219>3.0.CO;2-U
16. Falster R. Gettering in silicon: Fundamentals and recent advances. Semiconductor Fabtech, 2001, vol. 13, pp. 187—193.
17. Bhatti A.R., Falster R. J., Booker G. R. TEM studies of the gettering of cooper, palladium and nickel in Czochralski silicon by small oxide particles. Solid State Phenomena, 1991, vol. 19–20, pp. 51—56. DOI: 10.4028/www.scientific.net/SSP.19-20.51
18. Pat. 2512258 (RF). Sposob formirovaniya effektivnogo vnutrennego gettera v monokristallicheskikh bezdislokatsionnykh plastinakh kremniya [The method of forming an efficient internal getter in singlecrystal dislocation-free silicon wafers]. M. V. Mezhennyi, V. Ya. Reznik, 2014. (In Russ.)
19. Aleshin A. N., Enisherlova K. L., Kalinin A. A., Mordkovich V. N. The chemical factor and its influence on the formation of defect structures and their gettering properties in layers of silicon implanted with chemical-active ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, vol. 112, no. 1–4, pp. 184—187. DOI: 10.1016/0168-583X(95)01247-8
20. Mezhenny M. V., Milvidsky M. G., Reznik V. Ya. Generation of dislocations from internal sources in heat treated dislocation-free silicon wafers under external loads. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2007, no. 1, pp. 11—15. (In Russ.)
21. Vitman R. F., Guseva N. B., Lebedev A. A., Sitnikova A. A., Fal’kevich E. S., Chervonyi N. F. Interrelation of structuralsensitive properties with the genetic features of silicon single crystals. Fizika tverdogo tela, 1994, vol. 36, no. 3, pp. 697—704. (In Russ.)
22. Lapidus I. I., Kogan B. A., Perepelkin V. V., Karelin V. V., Gel’fgat G. N., Novikov V. V., Urivantseva V. B. Metallurgiya polikristallicheskogo kremniya [Metallurgy of polycrystalline silicon]. Moscow: Metallurgiya, 1971, 144 p. (In Russ.)
23. Falkevich E. S., Pulner E. O., Chervonyi I. F., Shvartsman L. Ya., Yarkin V. N., Salli I. V. Tekhnologiya poluprovodnikovogo kremniya [Semiconductor silicon technology]. Moscow: Metallurgiya, 1992, 408 p. (In Russ.)
24. Italyantsev A. G. The generation of vacancies, stimulated by chemical etching of the crystal surface. Poverkhnost’. Rentgenovskie, sinkhronnye i neitronnye issledovaniya, 1991, no. 10, pp. 122—127. (In Russ.)
25. Italyantsev A. G. The generation of non-equilibrium point defects and its attendant effects during physicochemical effects on the surface of crystals. Diss. of Dr. (Phys.-Math.). Moscow: IPTM RAS, 2009. 281 p. (In Russ.)
26. Italyantsev A. G., Mordkovich V. N., Smulsky A. S., Temper E. M. Khimicheskaya stimulyatsiya perestroiki defektov v kremnii [Chemical stimulation of defect restructuring in silicon]. V sb.: Vsesoyuznaya konferentsiya po radiatsionnoi fizike poluprovodnikov i rodstvennykh materialov. Tashkent, 1984, p. 179. (In Russ.)
27. Italyantsev A. G. Vzaimodeistvie sobstvennykh tochechnykh defektov s ikh klasterami v elementarnykh poluprovodnikakh pri vneshnikh vozdeistviyakh [Interaction of Own Point Defects with Their Clusters in Elementary Semiconductors under External Effects]. V Sb.: VI Konferentsiya po protsessam rosta i sinteza poluprovodnikovykh kristallov i plenok. Novosibirsk, 1982, vol. 2, pp. 19—20.
28. Italyantsev A. G., Mordkovich V. N. Transformation of cluster sizes of intrinsic point defects in semiconductors. Fizika i tekhnika poluprovodnikov, 1983, vol. 17, no. 2, pp. 217—222. (In Russ.)
29. Smulskii A. S., Italyantsev A. G., Mordkovich V. N. Novaya metodika likvidatsii rostovykh i tekhnologicheski vnosimykh defektov struktury kremniya pri sozdanii PZS [A new method for eliminating growth and technologically introduced defects in the structure of silicon when creating a CCD]. Sb.: Pribory s zaryadovoi svyaz’yu. Tekhnologiya i primenenie. Moscow, 1983, pp. 32—33. (In Russ.)
30. Smulskii A. S., Italyantsev A. G., Avdeev I. I., Mordkovich V. N. Thermal processing of silicon and the problem of eliminating defects in its structure when creating semiconductor devices and IC. Elektronnaya tekhnika. Series. 2. Poluprovodnikovye pribory = Electronic Engineering. Series 2. Semiconductor Devices, 1983, no. 3, pp. 62—69. (In Russ.)
31. Sarach O. B. Osnovy tekhnologii elektronnoi komponentnoi bazy [Basics of electronic component technology]. Moscow: NIU «MEI», 2012, 250 p. (In Russ.)
32. Technology microcontroller industry. URL: http://zinref.ru/000_uchebniki/02600komputeri/008_00_00_Tekhnologia_mikroelektronnoy_promyshlennosti/000.htm (In Russ.)
33. Sobolev N. A., Shek E. I., Dudavskii S. I., Kravtsov A. A. Suppression of swirl defects during heat treatment of crucible-free silicon wafers in a chlorine-containing atmosphere. Zhurnal tekhnicheskoi fiziki, 1985, vol. 55, no. 7, pp. 1457—1459. (In Russ.)
34. Kurbakov A. I., Rubinova E. E., Sobolev N. A., Trunov V. A., Shek E. I. Investigation of clusters of point defects in silicon single crystals using γ-ray diffraction. Kristallografiya, 1986, vol. 31, no. 5, pp. 979—985. (In Russ.)
35. Kurbakov A. I., Sobolev N. A. Gamma-ray diffraction inthe study of silicon. Materials Science and Engineering: B. 1994, vol. 22, no. 2–3, pp. 149—158. DOI: 10.1016/0921-5107(94)90237-2
36. Kharchenko V. A., Smirnov L. S., Solov’ev S. P., Stas’ V. F. Legirovanie poluprovodnikov metodom yadernykh reaktsii [Doping of semiconductors by the method of nuclear reactions]. LAP LAMBERT Academic Publishing, 2017, 262 p. (In Russ.)
37. Voronov I. N., Greskov I. M., Grinshtein P. M., Guchetl R. I., Morokhovets M. A., Sobolev N. A., Stuk A. A., Kharchenko V. A., Chelnokov V. E., Shek E. I. Influence of the annealing medium on the properties of radiationdoped silicon (RLC). Pis’ma v zhurnal tekhnicheskoi fiziki, 1984, vol. 10, no. 11. pp. 645—649. (In Russ.)
38. Greskov I. M., Smirnov B. V., Solovev S. P., Stuk A. A., Kharchenko V. A. Effect of growth defects on the electrophysical properties of radiationdoped silicon. Fizika i tekhnika poluprovodnikov, 1978, vol. 12, no. 10, pp. 1879—1882. (In Russ.)
39. Moiseenkova T. V., Svistel’nikova T. P., Stuk A. A., Alontsev S. A., Kharchenko V. A. Inverse diffusion of gold and iron in silicon during heat treatment in an oxygen + chlorine medium. Izv. AN SSSR. Neorganicheskie materialy, 1990, vol. 26, no. 1, pp. 5—8. (In Russ.)
40. Greskov I. M., Guseva N. B., Nikitina I. P., Sitnikova A. A., Solovev S. P., Sorokin L. M., Kharchenko V. A. Changes in the microstructure of dislocation-free silicon crystals during nuclear doping. Voprosy atomnoi nauki i tekhniki. Seriya: Fizika radiatsionnykh povrezhdenii i radiatsionnoe materialovedenie, 1982, no. 4, pp. 7—21. (In Russ.)
41. Greskov I. M., Solovev S. P., Kharchenko V. A. Effect of irradiation by reactor neutrons and heat treatment on microdefects in dislocationfree silicon. Izv. AN SSSR. Neorganicheskie materialy, 1980, vol. 16, no. 7, pp. 1141—1145. (In Russ.)
Review
For citations:
Kharchenko V.A. The getters in silicon. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(1):5-17. (In Russ.) https://doi.org/10.17073/1609-3577-2018-1-5-17