On the prospect of creating memory elements based on silicon nanoparticles
https://doi.org/10.17073/1609-3577-2019-2-84-91
Abstract
Keywords
About the Authors
I. V. TalyzinRussian Federation
Zhelyabova, 33, Tver, 170100
Igor V. Talyzin: Cand. Sci. (Phys.-Math.), Scientific Researcher
V. M. Samsonov
Russian Federation
Zhelyabova, 33, Tver, 170100
Vladimir M. Samsonov: Dr. Sci. (Phys.-Math.), Professor
References
1. Ischenko A. A., Fetisov G. V., Aslanov L. A. Nanokremniy: svoystva, polucheniye, primeneniye, metody issledovaniya i kontrolya [Nanosilicon: properties, preparation, application, research and control methods]. Moscow: FIZMATLIT, 2011, 647 p. (In Russ.)
2. Tanenbaum A. S. Structured computer organization. Pearson Prentice Hall, 2006, 777 p.
3. Simpson R. E., Fons P., Kolobov A. V., Fukaya T., Krbal M., Yagi T., Tominaga J. Interfacial phase-change memory. Nature Nanotechnology, 2011, vol. 6, no. 8, pp. 501—505. DOI: 10.1038/nnano.2011.96
4. Wuttig M., Yamada N. Phase-change materials for rewriteable data storage. Nature Mater, 2007, vol. 6, pp. 824—832. DOI: 10.1038/nmat2009
5. Karpov I. V., Mitra M., Kau D., Spadini G., Kryukov Y. A., Karpov V. G. Evidence of field induced nucleation in phase change memory. Appl. Phys. Lett., 2008, vol. 92, pp. 173501. DOI: 10.1063/1.2917583
6. Fons P., Osawa H., Kolobov A. V., Fukaya T., Suzuki M., Uruga T., Kawamura N., Tanida H., Tominaga J. Photoassisted amorphization of the phase-change memory alloy Ge2Sb2Te5. Phys. Rev. B, 2010, vol. 82, no. 4, pp. 041203. DOI: 10.1103/physrevb.82.041203
7. Makino K., Tominaga J., Hase M. Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials. Optics Express, 2011, vol. 19, no. 2, pp. 1260—1270. DOI: 10.1364/oe.19.001260
8. Kolobov A. V., Krbal M., Fons P., Tominaga J., Uruga T. Distortion triggered loss of long-range order in solids with bonding energy hierarchy. Nature Chem., 2011, vol. 3, pp. 311—316. DOI: 10.1038/nchem.1007
9. Shportko K., Kremers S., Woda M., Lencer D., Robertson J., Wuttig M. Resonant bonding in crystalline phase-change materials. Nature Mater., 2008, vol. 7, pp. 653—658. DOI: 10.1038/nmat2226
10. Huang B., Robertson J. Bonding origin of optical contrast in phase-change memory materials. Phys. Rev. B, 2010, vol. 81, no. 8, pp. 081204R. DOI: 10.1103/physrevb.81.081204
11. Lankhorst M., Ketelaars B., Wolters R. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater., 2005, vol. 4, pp. 347—352. DOI: 10.1038/nmat1350
12. Gafner Yu. Ya., Gafner S. L., Redel L. V. Nanostructures as a material for phase-inverse memory. Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials: Interuniversity collection of proceedings. Tver: TSU, 2018, no. 10, pp. 210—218. (In Russ.). DOI: 10.26456/pcascnn/2018.10.210
13. Bashkova D. A., Gafner Y. Y., Gafner S. L. On the prospects of using a phase transition in Ag nanoclusters for information recording processes. Lett. Mater., 2019, vol. 9, no. 4, pp. 382—385. DOI: 10.22226/2410-3535-2019-4-382-385
14. Talyzin I. V., Samsonov M. V., Vasilyev S. A., Pushkar M. Yu., Dronnikov V. V., Samsonov V. M. Molecular dynamics research of size dependence of the melting temperature of silicon nanoparticles. Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials: Interuniversity collection of proceedings. Tver: TSU, 2018, no. 10, pp. 618—627. (In Russ.). DOI: 10.26456/pcascnn/2018.10.618
15. Talyzin I. V., Samsonov M. V., Samsonov V. M., Pushkar M. Yu., Dronnikov V. V. Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation. Semiconductors, 2019, vol. 53, no. 7, pp. 947—953. DOI: 10.1134/S1063782619070236
16. Volodin V. A., Kachko A. S. Crystallization of hydrogenated amorphous silicon films by exposure to femtosecond pulsed laser radiation. Semiconductors, 2011, vol. 45, no. 2, pp. 265—270. DOI: 10.1134/S1063782611020254
17. Korchagina T., Volodin V. A., Popov A. A., Khorkov K. Formation of silicon nanocrystals in SiNx film on PET substrates using femtosecond laser pulses. Tech. Phys. Lett., 2011, vol. 37, no. 7, p. 622. DOI: 10.1134/S1063785011070091
18. Feynman R. P. There’s plenty of room at the bottom. Engineering and Science, 1960, vol. 23, no. 5, pp. 22—36. DOI: 10.1007/s12045-011-0109-x
19. Gerasimenko N. N., Parkhomenko Yu. N. Kremniy — material nanoelektroniki [Silicon is a material of nanoelectronics]. Moscow: Tekhnosfera, 2007, 352 p. (In Russ.)
20. Gribov B. G., Zinov’ev K. V., Kalashnik O. N., Gerasimenko N. N., Smirnov D. I., Sukhanov V. N., Kononov N. N., Dorofeev S. G. Production of silicon nanoparticles for use in solar cells. Semiconductors, 2017, vol. 51, no. 13, pp. 1675—1680. DOI: 10.1134/s1063782617130085
21. Hofmeister H., Dutta J., Hofmann H. Atomic structure of amorphous nanosized silicon powders upon thermal treatment. Phys. Rev. B, vol. 54, no. 4, pp. 2856—2862. DOI: 10.1103/physrevb.54.2856
22. LAMMPS Molecular Dynamics Simulator. URL: http://lammps.sandia.gov/
23. Stillinger F. H., Weber T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 1985, vol. 31, no. 8, pp. 5262—5271. DOI: 10.1103/physrevb.31.5262
24. Nose S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 1984, vol. 81, no. 1, pp. 511—519. DOI: 10.1063/1.447334
25. Fizicheskiye velichiny: spravochnik [Physical quantities]. Moscow: Energoatomizdat, 1991, 1232 p. (In Russ.)
26. Samsonov V. M., Kharechkin S. S., Gafner S. L., Redel’ L. V., Gafner Yu. Ya. Molecular dynamics study of the melting and crystallization of nanoparticles. Crystallogr. Rep., 2009, vol 54, pp. 526—531. DOI: 10.1134/S1063774509030250
27. Samsonov V. M., Vasilyev S. A., Talyzin I. V., Ryzhkov Yu. A. On reasons for the hysteresis of melting and crystallization of nanoparticles. JETP Lett., 2016, vol. 103, pp. 94—99. DOI: 10.1134/S0021364016020119
28. Samsonov V. M., Talyzin I. V., Samsonov M. V. On the effect of heating and cooling rates on the melting and crystallization of metal nanoclusters. Technical Physics, 2016, vol. 61, pp. 946—949. DOI: 10.1134/S1063784216060207
29. Veprek S., Iqbal Z., Sarott F.A. A thermodynamic criterion of the crystalline-to-amorphous transition in silicon. Philosophical Magazine B, 1982, vol. 45, pp. 137—145. DOI: 10.1080/13642818208246392
30. Polukhin V. A., Vatolin N. A. Modelirovaniye amorfnykh metallov [Modeling of amorphous metals]. Moscow: Nauka, 1985, 288 p. (In Russ.)
31. Popel S. I., Spiridonov M. A., Zhukova L. A. Atomnoye uporyadocheniye v rasplavlennykh i amorfnykh metallakh (Po dannym elektronografii) [Atomic ordering in molten and amorphous metals (According to electron diffraction data)]. Yekaterinburg: Publishing House of the Ural State Technical University, 1997, 382 p. (In Russ.)
32. Suzuki K., Khudzimori H., Hashimoto K. Amorfnyye metally [Amorphous metals]. Moscow: Metallurgy, 1987, 328 p. (In Russ.)
33. Falkevich E. S., Pulner E. O., Chervony I. F., Shvartsman L. Ya., Yarkin N. V., Sally I. V. Tekhnologiya poluprovodnikovogo kremniya [Semiconductor silicon technology]. Moscow: Metallurgy, 1992, 408 p. (In Russ.)
Review
For citations:
Talyzin I.V., Samsonov V.M. On the prospect of creating memory elements based on silicon nanoparticles. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(2):84-91. (In Russ.) https://doi.org/10.17073/1609-3577-2019-2-84-91