Structure and electric properties of zink oxide−based ceramics doped with iron
https://doi.org/10.17073/1609-3577-2018-3-133-145
Abstract
The structure and electrical properties of (FexOy)10 (ZnO)90 ceramics (0 ≤ x ≤ 3; 1 ≤ y ≤ 4) synthesized in air by one− and two−stage method were studied. To dope ZnO, powders of FeO, α−Fe2O3, and Fe3O4 or a mixture (α−Fe2O3 + FeO) were used. On the basis of X−ray diffraction analysis, gamma−resonance spectroscopy and Raman spectroscopy, it was established that at fixed average iron concentrations of 1—3 at.% in ceramic samples, at least three phases are formed: solid solution Zn1−δFeδO with wurtzite structure and residual iron oxides FexOy, used as doping agents. Scanning electron microscopy and energy−dispersive X−ray analysis have shown that, in the studied ceramics, the grain sizes of the wurtzite phase decreased from several tens of micrometers using one−step synthesis to the submicron level for the case of two−step synthesis. It was found that the incorporation of iron into ZnO leads to a contraction of the crystal lattice in the wurtzite phase and the stronger, the higher the proportion of oxygen in the doping iron oxides FexOy. The study of the temperature dependences of the electrical resistivity have shown that deep donor centers with an activation energy of about 0.35 eV are formed in the wurtzite phase Zn1−δFeδO. The temperature dependences of the electrical resistivity in the undoped ZnO in the temperature range of 6—300 K and in the doped ceramics (FexOy)10(ZnO)90, obtained by the one−step synthesis method, at temperatures below 50 K, are characterized by a variable activation energy, which indicates a strong disordering of their structure.
About the Authors
A. V. PashkevichRussian Federation
Alexey V. Pashkevich: Junior Researcher, Master Student
11 Bobruiskaya Str., Minsk 220030, Belarus;
4 Nezavisimosti Ave, 220030 Minsk, Belarus
A. K. Fedotov
Russian Federation
Alexander K. Fedotov: Dr. Sci. (Phys.− Math.), Chief Researcher, Professor
11 Bobruiskaya Str., Minsk 220030, Belarus;
4 Nezavisimosti Ave, 220030 Minsk, Belarus
Yu. V. Kasyuk
Russian Federation
Yuliya V. Kasyuk: Cand. Sci. (Phys.−Math.), Senior Reseacher
11 Bobruiskaya Str., Minsk 220030, Belarus
L. A. Bliznyuk
Russian Federation
Liudmila A. Bliznyuk: Head of Laboratory
19 P. Brovka Str., Minsk 220072, Belarus
J. A. Fedotova
Russian Federation
Julia A. Fedotova: Dr. Sci. (Phys.−Math.), Deputy of Director
11 Bobruiskaya Str., Minsk 220030, Belarus
N. A. Basov
Russian Federation
Nikita A. Basov: Reseacher
19 P. Brovka Str., Minsk 220072, Belarus
A. S. Fedotov
Russian Federation
Alexander S. Fedotov: Assistant Professor
4 Nezavisimosti Ave, 220030 Minsk, Belarus
I. A. Svito
Russian Federation
Ivan A. Svito: Cand. Sci. (Phys.−Math.), Senior Reseacher
4 Nezavisimosti Ave, 220030 Minsk, Belarus
E. N. Poddenezhny
Russian Federation
Evgheni N. Poddenezhny4: Dr. Sci. (Chem.), Chief Researcher, Professor
48 Oktyabrya Ave, Gomel 246746, Belarus
References
1. Ivon A. I., Glot A. B., Lavrov R. I., Lu Z.−Ya. Grain resistivity in zinc oxide and tin dioxide varistor ceramics. J. Alloys and Compounds, 2014, vol. 616, pp. 372—377. DOI: 10.1016/j.jallcom.2014.07.178
2. Sawalha A., Abu−Abdeen M., Sedky A. Electrical conductivity study in pure and doped ZnO ceramic system. Physica B, 2009, vol. 404, pp. 1316—1320. DOI: 10.1016/j.physb.2008.12.017
3. Winarski D. J. Synthesis and characterization of transparent conductive zinc oxide thin films by sol−gel spin coating method: Thesis of Master of Science (Physics). Graduate College of Bowling Green, 2015. 87 p. URL: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1434124579
4. Kopach V. R., Klepikova K. S., Klochko N. P., Khrypunov G. S., Korsun V. E., Lyubov V. M., Kirichenko M. V., Kopach A. V. Structure and properties of nanostructured ZnO arrays and ZnO/Ag nanocomposites fabricated by pulsed electrodeposition. Semiconductors, 2017, vol. 51, no. 3, pp. 335—343. DOI: 10.1134/S1063782617030125
5. Zakhvalinskii V. S., Zakhvalinskaya M. N., Laiho R., Huhtinen H., Pilyuk E. A., Nekrasova Yu. S., Borisenko L. V. Рreparation and magnetic properties of ZnO: Li, Fe. Bulletin of Belgorod State University, 2016, vol. 6, no. 42, pp. 94—98. (In Russ.).
6. Jahafarova V. N., Orudzhev G. S., Guseinova S. S., Stempitskii V. R., Baranova M. S. Magnetic properties of vacancies and doped chromium in a ZnO crystal. Semiconductors, 2018, vol. 52, no. 8, pp. 1047—1050. DOI: 10.1134/S1063782618080055
7. Gorokhova E. I., Rodnyi P. A., Chernenko K. A., Anan’eva G. V., Eron’ko S. B., Oreshchenko E. A., Khodyuk I. V., Lokshin E. P., Kunshina G. B., Gromov O. G., Lott K. P. Structural, optical, and scintillation characteristics of ZnO ceramics. J. Opt. Technol., 2011, vol. 78, no. 11, pp. 753—760.
8. Kharchenko A. A., Bumai Yu. B., Gumarov A. I., Lukashevich M. G., Nuzhdin V. I., Khaibullin R. I., Odzhaev V. B. Electric and Magnetic characteristics of Zink Oxide implanted with Co ions. Bulletin of Belarusian State University: Ser. 1: Physics. Mathematics. Informatics, 2014, no. 1, pp. 20—25. (In Russ.). URL: http://elib.bsu.by/handle/123456789/113648
9. Parra−Palomino A., Singhal R., Perales Perez O., Dussan−Devia S., Tomar M. S. Low−Temperature Chemical Solution Synthesis and Characterization of Nanocrystalline Fe−doped ZnO. NSTI−Nanotech, 2007, vol. 4, pp. 297—300. URL: https://briefs.techconnect.org/wp−content/volumes/Nanotech2007v4/pdf/1013.pdf
10. Kazeminezhad I., Saadatmand S., Yousefi R. Effect of transition metal elements on the structural and optical properties of ZnO nanoparticles. Bull. Mater. Sci., vol. 39, no. 3, pp. 719—724. DOI:10.1007/s12034-016-1206-y
11. Jagannatha Reddy A., Kokila M. K., Nagabhushana H., Sharma S. C., Rao J. L., Shivakumara C., Nagabhushana B. M., Chakradhar R. P. S. Structural, EPR, photo and thermoluminescence properties of ZnO : Fe nanoparticles. Materials Chemistry and Physics, 2012, vol. 133, no. 2–3, pp. 876—883. DOI:10.1016/j.matchemphys.2012.01.111
12. Silambarasan M., Saravanan S., Soga T. Raman and photoluminescence studies of Ag and Fe−doped ZnO. Int. J. ChemTech Res., 2015, vol. 7, no. 3, pp. 1644—1650.
13. Makino T., Segawa Y., Tsukazaki A., Saito H., Takeyama S., Akasaka S., Nakahara K., Kawasaki M. Magneto−photoluminescence of charged excitons from MgxZn1−xO/ZnO heterojunctions. Phys. Rev. B, 2013, vol. 87, no. 8, pp. 085312−1−7. DOI: 10.1103/PhysRevB.87.085312
14. Shao Q., Liao F., Ruotolo A. Magnetic−polaron−induced enhancement of surface Raman scattering. Scientific Reports, 2016, vol. 6, art. no. 19025 (pp. 7). DOI: 10.1038/srep19025
15. Goldsmith H.J. Introduction to the Thermoelectricity. Berlin: Springer Berlin Heidelberg, 2016, 233 p. DOI:10.1007/978-3-642-00716-3
16. Roychowdhury A., Mishra A. K., Pati S. P., Das D. Synthesis and characterization of multifunctional Fe3O4—ZnO nanocomposites. AIP Conf. Proc., 2012, vol. 1447, no. 1, pp. 283—284. DOI: 10.1063/1.4709990
17. Zou P., Hong X., Chu X., Li Y., Liu Y. Multifunctional Fe3O4/ZnO nanocomposites with magnetic and optical properties. J. Nanosci. Nanotechnol., 2010, vol. 10, no. 3, pp. 1992—1997. DOI: 10.1166/jnn.2010.2098
18. Hasanpour A., Niyaifar M., Asan M., Amighian J. Synthesis and characterization of Fe3O4 and ZnO nanocomposites by the sol−gel method. J. Magn. Magn. Mater., 2013, vol. 334, pp. 41—44. DOI: 10.1016/j.jmmm.2013.01.016
19. Roychowdhurya A., Pati S. P., Mishra A. K., Kumar S., Das D. Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: structural, optical and magnetization studies. J. Phys. Chem. Solids, 2013, vol. 74, no. 6, pp. 811—818. DOI: 10.1016/j.jpcs.2013.01.012
20. Karpova S. S., Moshnikov V. A., Myakin S. V., Kolovangina E. S. Surface functional composition and sensor properties of ZnO, Fe2O3 and ZnFe2O4. Semiconductors, 2013, vol. 47, no. 3, pp. 392—395. DOI: 10.1134/S1063782613030123
21. Janotti A., Van de Walle C. G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys., 2009, vol. 72, no. 12, pp. 1—29. DOI: 10.1088/0034−4885/72/12/126501
22. Janotti A., Van de Walle C. G. Native point defects in ZnO. Phys. Rev. B, 2007, vol. 76, no. 16, pp. 1—22. DOI: 10.1103/PhysRevB.76.165202
23. Wu X. L., Siu G. G., Fu C. L., Ong H. C. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen−deficient ZnO films. Appl. Phys. Lett., 2001, vol. 78, no. 16, pp. 2285—2287. DOI: 10.1063/1.1361288
24. Hausmann A. The cubic field parameter of 6S5/2 ions in zinc oxide crystals. Solid State Commun., 1968, vol. 6, no. 7, pp. 457—459. DOI: 10.1016/0038-1098(68)90054-9
25. Walsh (Jr.) W. M., Rupp (Jr.) L. W. Paramagnetic resonance of trivalent Fe57 in zinc oxide. Phys. Rev., 1962, vol. 126, no. 3, pp. 952—955. DOI: 10.1103/PhysRev.126.952
26. Jiang Y., Giles N. C., Halliburton L. E. Persistent photoinduced changes in charge states of transition−metal donors in hydrothermally grown ZnO crystals. J. Appl. Phys., 2007, vol. 101, no. 9, pp. 093706−1−8. DOI: 10.1063/1.2723872
27. Schmidt−Mende L., MacManus−Driscoll J. L. ZnO — nanostructures, defects, and devices Materials Today, 2007, vol. 10, no. 5, pp. 40—48. DOI: 10.1016/S1369-7021(07)70078-0
28. Rodríguez−Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 1993, vol. 192, no. 1–2, pp. 55—69. DOI: 10.1016/0921-4526(93)90108-I
29. Rancourt D. G. Accurate site population form Mössbauer spectroscopy. Nucl. Instr. Meth. B, 1989, vol. 44, no. 2, pp. 199—210. DOI: 10.1016/0168−583X(89)90428−X
30. Stewart S. J., Figueroa S. J. A., Sturla M. B., Scorzelli R. B., García F., Requejo F. G. Magnetic ZnFe2O4 nanoferrites studied by X−ray magnetic circular dichroism and Mössbauer spectroscopy. Physica B: Condensed Matter, 2007, vol. 389, no. 1, pp. 155—158. DOI: 10.1016/j.physb.2006.07.045
31. Bødker F., Mørup S. Size dependence of the properties of hematite nanoparticles. Europhys. Lett., 2000, vol. 52, no. 2, pp. 217—223. DOI: 10.1209/epl/i2000-00426-2
32. Shklovskii B. I., Efros A. L. Electronic properties of doped semiconductors. Berlin; Heidelberg: Springer−Verlag, 1984, 388 p. DOI: 10.1007/978-3-662-02403-4
33. Kohan A. F., Ceder G., Morgan D., Van de Walle C. G. First−principles study of native point defects in ZnO. Phys. Rev. B, 2000, vol. 61, no. 22, pp. 15019—15027. DOI: 10.1103/PhysRevB.61.15019
34. Chiu S. P., Lin Y. H., Lin J. J. Electrical conduction mechanisms in natively doped ZnO nanowires. Nanotechnology, 2009, vol. 20, no. 1, pp. 015203−1—8. DOI: 10.1088/0957-4484/20/1/015203
35. Lien C. C., Wu C. Y., Li Z. Q., Lin J. J. Electrical conduction processes in ZnO in a wide temperature range 20–500 K. J. Appl. Phys., 2011, vol. 110, no. 6, pp. 063706−1−7. DOI: 10.1063/1.3638120
36. Quemener V., Vines L., Monakhov E. V., Svensson B. G. Iron related donor−like defect in zinc oxide. Appl. Phys. Lett., 2013, vol. 102, no. 23, pp. 232102−1−3. DOI: 10.1063/1.4809941
37. Mott N. F., Davis E. A. Electronic processes in non−crystalline materials. Oxford: Clarendon Press; New York: Oxford University Press, 1979, 590 p.
38. Von Wenckstern H., Schmidt H., Grundmann M., Allen M. W., Miller P., Reeves R. J., Durbin S. M. Defects in hydrothermally grown bulk ZnO. Appl. Phys. Lett., 2007, vol. 91, no. 2, pp. 022913−1−3. DOI: 10.1063/1.2757097
39. Shik A. Ya. Hall effect and electron mobility in inhomogeneous semiconductors. JETP Lett., 1974, vol. 20, no. 1, pp. 5—7. URL: www.jetpletters.ac.ru/ps/1783/index.shtml
40. Kasiyan V. A., Nedeoglo D. D., Simashkevich A. V., Timchenko I. N. Electron mobility in heavily doped strongly compensated ZnSe crystals. Phys. Status Solidi B, 1986, vol. 136, no. 1, pp. 341—347. DOI: 10.1002/pssb.2221360138
41. Kagan V. D. Electron capture by charged impurities in semiconductors under conditions of spatial diffusion. Phys. Solid State, 2005, vol. 47, no. 3, pp. 446—450. DOI: 10.1134/1.1884703
Review
For citations:
Pashkevich A.V., Fedotov A.K., Kasyuk Yu.V., Bliznyuk L.A., Fedotova J.A., Basov N.A., Fedotov A.S., Svito I.A., Poddenezhny E.N. Structure and electric properties of zink oxide−based ceramics doped with iron. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(3):133-145. (In Russ.) https://doi.org/10.17073/1609-3577-2018-3-133-145