Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Features of manifestation of surface electrochemical processes in ferroelectric crystals with low−temperature phase transitions

https://doi.org/10.17073/1609-3577-2018-3-146-155

Abstract

Abstract. The process of short circuit current behaviour in crystals with low−temperature phase transitions Rochelle salt NaKC4H4O6 • 4H2O and triglycine sulfate (CH2 • NH2 • COOH)3 • H2SO4 was studied. The investigations were carried out on samples of polar cuts without preliminary polarization with symmetrical indium conductive coatings. Short−circuit currents which persist for a rather long time were observed on all samples already at room temperature. The phenomenon of current decay with time was observed. The temperature dependences of short−circuit currents were obtained in the temperature range 17—45 °С for Rochelle salt, in the temperature range 17—110 °С for triglycine sulfate. Short−circuit currents are observed in these crystals both in the ferroelectric phase and in the paraphase. It is shown that in a ferroelectric phase, the total short−circuit current is determined by the competing processes — pyro−currents and currents of electrochemical decomposition. In the paraphase, the short−circuit currents are the currents of electrochemical self−decomposition. Based on the experimental results obtained in this work, it was shown that the flow of short−circuit currents through the samples of polar sections of crystals of Rochelle salt and triglycine sulfate is due to the presence of its own EMF resulting from electrochemical self−decomposition of the opposite surfaces of the polar sections of the samples in contact with conductive coatings due to anisotropy of these surfaces. A model of electrochemical self−decomposition in such crystals is proposed.

About the Authors

N. S. Kozlova
National University of Science and Technology MISiS
Russian Federation

Cand. Sci. (Phys.−Math.), Head of Laboratory

4 Leninskiy Prospekt, Moscow 119049, Russia



E. V. Zabelina
National University of Science and Technology MISiS
Russian Federation

Cand. Sci. (Phys.−Math.), Leading Engineer

4 Leninskiy Prospekt, Moscow 119049, Russia



M. B. Bykova
National University of Science and Technology MISiS
Russian Federation

Leading Engineer

4 Leninskiy Prospekt, Moscow 119049, Russia



A. P. Kozlova
National University of Science and Technology MISiS
Russian Federation

Leading Engineer

4 Leninskiy Prospekt, Moscow 119049, Russia



References

1. Blistanov А. А., Kozlova N. S., Geraskin V. V. The influence of surface states on the features of phase transformations and the formation of structural defects in lithium iodate crystals. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya = Russian Journal of Non−Ferrous Metals., 1996, no. 4, pp. 66—71. (In Russ.)

2. Blistanov A. A., Kozlova N. S., Geras’kin V. V. The phenomenon of electrochemical self−decomposition in polar dielectrics. Ferroelectrics, 1997, vol. 198, no. 1, pp. 61—66. DOI: 10.1080/00150199708228338

3. Zhu Yong, Zhang Dao−Fan, Xu Zheng−Yi. The electrical properties of KLiSO4 single crystals. Acta Phys. Sin., 1982, vol. 31, no. 8, pp.1073—1079. (In Chin.). DOI: 10.7498/aps.31.1073

4. Juhasz C., Gil−Zambrano J. L. Spontaneous electric currents from nylon films. J. Phys. D: Appl. Phys., 1982, vol. 15, no. 2, pp. 327—336. DOI: 10.1088/0022-3727/15/2/019

5. Sharma R., Sud L. V. Temperature−dependent currents in unpolarised poly(vinyl alcohol). J. Phys. D: Appl. Phys., 1981, vol. 14, no. 9, pp. 1671—1676. DOI: 10.1088/0022-3727/14/9/015

6. Srivastava J. P., Shrivastava S. K., Srivastava A. P. Thermally stimulated discharge currents from unpoled iodine doped polyvinylacetate. Jpn. J. Appl. Phys., 1981, vol. 20, no. 12, pp. 2439—2442. DOI: 10.1143/JJAP.20.2439

7. Gorokhovatsky Yu. A. Termoaktivatsionnaya tokovaya spektroskopiya vysokoomsnykh poluprovodnikov i dielektrikov [Thermal activation current spectroscopy of high−ohm semiconductors and dielectrics]. Moscow: Nauka, 1991, 248 p. (In Russ.)

8. Chebotin V. N. Perfil’yev M. V. Elektrokhimiya tverdykh elektrolitov [Electrochemistry of solid electrolytes]. Moscow: Khimiya, 1978, 312 p. (In Russ.)

9. Jona F., Shirane G. Segnetoelektricheskiye kristally [Ferroelectric crystals]. Moscow: Mir, 1965, 555 p. (In Russ.)

10. Gavrilova N. D., Malyshkina I. A. The influence of changes in the structure of hydrogen bonds of water on the electrophysical properties of matrix−water systems in stepwise heating. Moscow University Physics Bulletin., 2018, no. 6, pp. 74—80. (In Russ).

11. Gorokhovatsky Yu. A. Osnovy termoaktivatsionnogo analiza [Basics of thermo−activation analysis]. Moscow: Nauka, 1981, 152 p. (In Russ.)

12. Maslovskaya A. G. Study of the polarization distribution in ferroelectric crystals based on the solution of the inverse pyroelectric problem. Physics and mathematics. Physics. = Fiziko−matematicheskiye nauki. Fizika, 2012, no. 3, pp. 114—122. (In Russ.)

13. Novik V. K., Gavrilova N. D. Low−temperature pyroelectricity. Phys. Solid State, 2000, vol. 42, no. 6, pp. 991—1008. DOI: 10.1134/1.1131338

14. Golitsyna O. M., Drozhdin S.N., Nikishina A. I. Polarization relaxation in Rochelle salt crystals. Phys. Solid State, 2007, vol. 49, no. 10, pp. 1953—1956. DOI: 10.1134/S106378340710023X

15. Novikov V. N., Novik V. K., Esengaliev A. B., Gavrilova N. D. Point defects and singularities of the low−temperature (T < 15 K) behavior of the pyroelectric coefficient and the spontaneous polarization of TGS, LiTaO3 and LiNbO3. Ferroelectrics, 1991, vol. 118, no. 1, pp. 59—69. DOI: 10.1080/00150199108014745

16. Bogomolov A. A., Dabizha T. A., Malyshkina O. V. Nonlinear pyroeffect in unipolar DTGS crystals. Ferroelectrics, 1996, vol. 186, no. 1. pp. 1—4. DOI:10.1080/00150199608218019

17. Malyshkina O. V. Spatial distribution of polarization and pyroelectric effect in ferroactive materials. Diss. ... Dr. Sci. (Phys.− Math.). Voronezh, 2009. 260 p. (In Russ.)

18. Drozhdin S. N., Golitsyna O. M., Nikishina A. I., Kostsov A. M. Pyroelectric and dielectric properties of triglycine sulphate with an impurity of phosphorus (TGSP). Ferroelectrics, 2008, vol. 373, no. 1, pp. 93—98. DOI: 10.1080/00150190802408804

19. Oreshkin P.T. Fizika poluprovodnikov i dielektrikov [Physics of semiconductors and dielectrics]. Moscow: Vysshaya shkola, 1977, 448 p. (In Russ.)

20. Blistanov A. A., Kozlova N. S., Geraskin V. V. Yavleniye elektrokhimicheskogo razlozheniya polyarnykh dielektricheskikh kristallov [Phenomenon of Electrochemical Decomposition of Polar Dielectric Crystals. Scientific Discoveries]. Sb. kratkikh opisanii nauchnykh otkrytii = Collection of brief descriptions of scientific discoveries. Moscow: Rossiiskaya akademiya estestvennykh nauk, 2002. p. 20. (In Russ.)

21. Delimarsky Yu. K., Markov B. F. Elektrokhimiya rasplavlennykh soley [Electrochemistry of molten salts]. Moscow: Khimiya, 1960, 325 p. (In Russ.)

22. Mikhailova A. M., Ukshe E. A. Electrochemical circuits with solid electrolytes in a silver−complex iodine electrode system. Elektrokhimiya = Russian Electrochemistry, 1987, vol. 23, no. 5, pp. 685—688. (In Russ.)

23. Buzanov O. A., Zabelina E. V., Kozlova N. S., Sagalova T. B. Near−electrode processes in lanthanum−gallium tantalate crystals. Crystallogr. Rep., 2008, vol. 53, no. 5, pp. 853—857. DOI: 10.1134/S1063774508050210

24. Kozlova A. P., Kozlova N. S., Anfimov I. M., Kiselev D. A., Bykov A. S. Lanthanum−gallium tantalate crystals and their electrophysical characterization. J. Nano− Electron. Phys., 2014, vol. 6, no. 3, pp. 03034−1—03034−4.

25. Kozlova N. S., Buzanov O. A. Kozlova A. P., Anfimov I. M. Lanthanum−gallium tantalate crystals: surface processes and their effect on electrophysical properties. IOP Conf. Series: Materials Science and Engineering, 2015, vol. 80, pp. 012017−1—012017−4. DOI: 10.1088/1757-899X/80/1/012017

26. Zheludev I. S. Fizika kristallicheskikh dielektrikov [Physics of crystalline dielectrics]. Moscow: Nauka, 1968, 464 p. (In Russ.)

27. Perelomova N. V., Tagiyeva M. M. Kristallofizika. Sbornik zadach s resheniyami [Crystal Physics. Collection of problems with solutions]. Moscow: MISiS, 2013. 408 p. (In Russ.)

28. Rez I. S., Poplavko Yu. M. Osnovnyye svoystva i primeneniye v elektronike [Dielectrics. Basic properties and applications in electronics]. Moscow: Radio i svyaz, 1989, 288 p. (In Russ.)


Review

For citations:


Kozlova N.S., Zabelina E.V., Bykova M.B., Kozlova A.P. Features of manifestation of surface electrochemical processes in ferroelectric crystals with low−temperature phase transitions. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(3):146-155. (In Russ.) https://doi.org/10.17073/1609-3577-2018-3-146-155

Views: 905


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)