Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Influence of phase composition and local crystal structure on the transport properties of ZrO2−Y2O3 and ZrO2−Gd2O3 solid solutions

https://doi.org/10.17073/1609-3577-2018-3-156-165

Abstract

Abstract. The results of investigation of crystal structure, ion conductivity and local structure of solid solutions (ZrO2)1−x(Gd2O3)x and (ZrO2)1−x(Y2O3)x (x = 0.04, 0.08, 0.10, 0.12, 0.14). The crystals were grown by directional crystallization of the melt in a cold container. The phase composition of the crystals was studied by X−ray diffractometry and transmission electron microscopy. Transport characteristics were studied by impedance spectroscopy in the temperature range 400—900 °C. The local crystal structure was studied by optical spectroscopy. Eu3+ ions were used as a spectroscopic probe. The results of the study of the local structure of solid solutions of ZrO2—Y2O3 and ZrO2—Gd2O3 systems revealed the peculiarities of the formation of optical centers, which reflect the nature of the localization of oxygen vacancies in the crystal lattice depending on the stabilizing oxide concentration. It is established that the local crystal environment of Eu3+ Ions in solid solutions (ZrO2)1−x(Y2O3)x and (ZrO2)1−x(Gd2O3)x is determined by the stabilizing oxide concentration and practically does not depend on the type of stabilizing oxide (Y2O3 or Gd2O3). The maximum conductivity at 900 °C was observed in crystals containing 10 mol.% Gd2O3 and 8 mol.% Y2O3. These compositions correspond to the t′′−phase and are close to the boundary between the regions of the cubic and tetragonal phases. It was found that in the system ZrO2—Y2O3 stabilization of the highly symmetric phase occurs at a lower stabilizing oxide concentration than in the system ZrO2—Gd2O3. Analysis of the data obtained allows us to conclude that in this range of compositions the main influence on the concentration dependence of the ion conductivity has a phase composition, rather than the nature of the localization of oxygen vacancies in the crystal lattice.

About the Authors

E. A. Agarkova
Institute of Solid State Physics Russian Academy of Sciences
Russian Federation

Postgraduate Student

2 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432, Russia



M. A. Borik
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Eng.), Senior Researcher

38 Vavilov Str., Moscow 119991, Russia



V. T. Bublik
National University of Science and Technology MISiS
Russian Federation

Dr. Sci. (Phys.−Math.), Professor

4 Leninskiy Prospekt, Moscow 119049, Russia



T. V. Volkova
National Research Ogarev Mordovia State University
Russian Federation

Cand. Sci. (Phys.−Math.), Junior Researcher

68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia



A. V. Kulebyakin
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Eng.), Senior Researcher

38 Vavilov Str., Moscow 119991, Russia



I. E. Kuritsyna
Institute of Solid State Physics Russian Academy of Sciences
Russian Federation

Junior Researcher

2 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432, Russia



N. A. Larina
National Research Ogarev Mordovia State University
Russian Federation

Student

68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia



E. E. Lomonova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Dr. Sci (Eng.), Head of Laboratory

38 Vavilov Str., Moscow 119991, Russia



F. O. Milovich
National University of Science and Technology MISiS
Russian Federation

Cand. Sci. (Phys.−Math.), Engineer 

4 Leninskiy Prospekt, Moscow 119049, Russia



V. A. Myzina
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Researcher

38 Vavilov Str., Moscow 119991, Russia



P. A. Ryabochkina
National Research Ogarev Mordovia State University
Russian Federation

Dr. Sci. (Phys.−Math.), Professor

68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia



N. Yu. Tabachkova
Prokhorov General Physics Institute of the Russian Academy of Sciences; National University of Science and Technology MISiS
Russian Federation

Cand. Sci. (Phys.−Math.), Associate Professor

38 Vavilov Str., Moscow 119991, Russia;
4 Leninskiy Prospekt, Moscow 119049, Russia



References

1. Science and technology of zirconia V. Ed. by S. P. S. Badwal, M. J. Bannister, R. H. J. Hannink. Lancaster: Technomic Pub. Co., 1993, 862 p.

2. Basu R. N. Materials for solid oxide fuel cells. Ch. 12. Recent trends in fuel cell science and technology. New Delhi (India): Anamaya Publishers, 2007, pp. 284—329. DOI: 10.1007/978-0-387-68815-2

3. Yamamoto O., Arachi Y., Sakai H., Takeda Y., Imanishi N., Mizutani Y., Kawai M., Nakamura Y. Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics, 1998, vol. 4, no. 5–6, pp. 403—408. DOI: 10.1007/BF02375884

4. Kuzminov Yu. S., Lomonova E. E., Osiko V. V. Tugoplavkie materialy iz kholodnogo tiglya [Refractory materials from a cold crucible]. Мoscow: Nauka, 2004. 369 p. (In Russ.)

5. Arachi Y., Sakai H., Yamamoto O., Takeda Y., Imanishai N. Electrical conductivity of the ZrO—Ln2O3 (Ln = lanthanides) system. Solid State Ionics, 1999, vol. 121, no. 1–4, pp. 133—139. DOI: 10.1016/S0167-2738(98)00540-2

6. Kilner J. A., Brook R. J. A study of oxygen ion conductivity in doped non−stoichiometric oxides. Solid State Ionics, 1982, vol. 6, no. 3, pp. 237—252. DOI: 10.1016/0167-2738(82)90045-5

7. Kilner J. A., Waters C. D. The effects of dopant cation−oxygen vacancy complexes on the anion transport properties of non−stoichiometric fluorite oxides. Solid State Ionics, 1982, vol. 6, no. 3, pp. 253—259. DOI: 10.1016/0167-2738(82)90046-7

8. Goff J. P., Hayes W., Hull S., Hutchings M. T., Clausen K. N. Defect structure of yttria−stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B, 1999, vol. 59, no. 22, pp. 14202—14219. DOI: 10.1103/PhysRevB.59.14202

9. Yugami H., Koike A., Ishigame M., Suemoto T. Relationship between local structures and ionic conductivity in ZrO2−Y2O3 studied by site−selective spectroscopy. Phys. Rev. B, 1991, vol. 44, no. 17, pp. 9214—9222. DOI: 10.1103/PhysRevB.44.9214

10. Catlow C. R. A. Transport in doped fluorite oxides. Solid State Ionics, 1984, vol. 12, pp. 67—73. DOI: 10.1016/0167-2738(84)90131-0

11. Zavodinsky V. G. The mechanism of ionic conductivity in stabilized cubic zirconia. Phys. Solid State, 2004, vol. 46, no. 3, pp. 453—457. DOI: 10.1134/1.1687859

12. Tokiy N. V., Perekrestov B. I., Savina D. L., Danilenko I. A. Concentration and temperature dependences of the oxygen migration energy in yttrium−stabilized zirconia. Phys. Solid State, 2011, vol. 53, pp. 1827—1901. DOI: 10.1134/S1063783411090290

13. Ding H., Virkar A. V., Liu F. Defect configuration and phase stability of cubic versus tetragonal yttria−stabilized zirconia. Solid State Ionics, 2012, vol. 215, pp. 16—23. DOI: 10.1016/j.ssi.2012.03.014

14. Li X., Hafskjold B. Molecular dynamics simulations of yttrium−stabilized zirconia. J. Phys.: Condens. Matter.,1995, vol. 7, pp. 1255—1271. DOI: 10.1088/0953-8984/7/7/007

15. Eichler A. Tetragonal Y−doped zirconia: Structure and ion conductivity. Phys. Rev. B., 2001, vol. 64, no. 17, pp. 174103-1—174103-8. DOI: 10.1103/PhysRevB.64.174103

16. Dexpert−Ghys J., Faucher M., Caro P. Site selective spectroscopy and structural analysis of yttria−doped zirconias. J. Solid State Chem., 1984, vol. 54, no. 2, pp. 179—192. DOI: 10.1016/0022-4596(84)90145-2

17. Voron’ko Yu. K., Zufarov M. A., Sobol’ A. A., Ushakov S. N., Tsymbal L. I. Spectroscopy and structure of Eu3+ centers in partially stabilized zirconia and hafnia. Inorganic Materials, 1997, vol. 33, no. 4, pp. 379—389.

18. Borik, M. A., Volkova T. V., Kuritsyna I. E., Lomonova E. E., Myzina V. A., Ryabochkina P. A., Tabachkova N. Yu. Features of the local structure and transport properties of ZrO2−Y2O3−Eu2O3 solid solutions. J. Alloys Compounds, 2019, vol. 770, pp. 320—326. DOI: 10.1016/j.jallcom.2018.08.117

19. Borik M. A., Lomonova E. E., Osiko V. V., Panov V. A., Porodinkov O. E., Vishnyakova M. A., Voron’ko Yu. K., Voronov V, vol. Partially stabilized zirconia single crystals: growth from the melt and investigation of the properties. J. Cryst Growth, 2005, vol. 275, no. 1–2, pp. e2173—e2179. DOI: 10.1016/j.jcrysgro.2004.11.244

20. Andrievskaya E. R. Fazovye ravnovesiya v sistemakh oksidov gafniya, tsirkoniya, ittriya s oksidami redkozemel’nykh elementov [Phase equilibria in systems of oxides of hafnium, zirconium, yttrium with oxides of rare−earth elements]. Kiev. Naukova Dumka, 2010, 472 p. (In Russ.)

21. Yashima M., Sasaki S., Kakihana M., Yamaguchi Y., Arashi H., Yoshimura M. Oxygen−induced structural change of the tetragonal phase around the tetragonal−cubic phase boundary in ZrO2−YO1.5 solid solutions. Acta Cryst. B, 1994, vol. 50, no. 6, pp. 663—672. DOI: 10.1107/S0108768194006257

22. Judd B. R. Three−particle operators for equivalent electrons. Phys. Rev., 1966, vol. 141, no. 1, pp. 4—14. DOI: 10.1103/PhysRev.141.4

23. Krupke, W. F. Optical absorption and fluorescence intensities in several rare−earth−doped Y2O3 and LaF3 single crystals. Phys. Rev., 1966, vol. 145, no. 1, pp. 325—337. DOI: 10.1103/PhysRev.145.325

24. Bol’shakova E. V., Malov A. V., Ryabochkina P. A., Ushakov S. N., Nishchev K. N. Intensities of hypersensitive transitions in garnet crystals doped with Er3+ ions. Opt. Spectrosc., 2011, vol. 110, no. 6, pp. 910—916. DOI: 10.1134/S0030400X11060038

25. Borik M. A., Volkova T. V., Lomonova E. E., Myzina V. A., Ryabochkina P. A., Tabachkova N. Yu., Chabushkin A. N. Spectroscopy of optical centers of Eu3+ ions in partially stabilized and stabilized zirconium crystals. Opt. Spectrosc., 2017, vol. 122, no. 4, pp. 580—587. DOI: 10.1134/S0030400X17040087


Review

For citations:


Agarkova E.A., Borik M.A., Bublik V.T., Volkova T.V., Kulebyakin A.V., Kuritsyna I.E., Larina N.A., Lomonova E.E., Milovich F.O., Myzina V.A., Ryabochkina P.A., Tabachkova N.Yu. Influence of phase composition and local crystal structure on the transport properties of ZrO2−Y2O3 and ZrO2−Gd2O3 solid solutions. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(3):156-165. (In Russ.) https://doi.org/10.17073/1609-3577-2018-3-156-165

Views: 915


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)