Influence of phase composition and local crystal structure on the transport properties of ZrO2−Y2O3 and ZrO2−Gd2O3 solid solutions
https://doi.org/10.17073/1609-3577-2018-3-156-165
Abstract
About the Authors
E. A. AgarkovaRussian Federation
Postgraduate Student
2 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432, Russia
M. A. Borik
Russian Federation
Cand. Sci. (Eng.), Senior Researcher
38 Vavilov Str., Moscow 119991, Russia
V. T. Bublik
Russian Federation
Dr. Sci. (Phys.−Math.), Professor
4 Leninskiy Prospekt, Moscow 119049, Russia
T. V. Volkova
Russian Federation
Cand. Sci. (Phys.−Math.), Junior Researcher
68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia
A. V. Kulebyakin
Russian Federation
Cand. Sci. (Eng.), Senior Researcher
38 Vavilov Str., Moscow 119991, Russia
I. E. Kuritsyna
Russian Federation
Junior Researcher
2 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432, Russia
N. A. Larina
Russian Federation
Student
68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia
E. E. Lomonova
Russian Federation
Dr. Sci (Eng.), Head of Laboratory
38 Vavilov Str., Moscow 119991, Russia
F. O. Milovich
Russian Federation
Cand. Sci. (Phys.−Math.), Engineer
4 Leninskiy Prospekt, Moscow 119049, Russia
V. A. Myzina
Russian Federation
Researcher
38 Vavilov Str., Moscow 119991, Russia
P. A. Ryabochkina
Russian Federation
Dr. Sci. (Phys.−Math.), Professor
68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia
N. Yu. Tabachkova
Russian Federation
Cand. Sci. (Phys.−Math.), Associate Professor
38 Vavilov Str., Moscow 119991, Russia;
4 Leninskiy Prospekt, Moscow 119049, Russia
References
1. Science and technology of zirconia V. Ed. by S. P. S. Badwal, M. J. Bannister, R. H. J. Hannink. Lancaster: Technomic Pub. Co., 1993, 862 p.
2. Basu R. N. Materials for solid oxide fuel cells. Ch. 12. Recent trends in fuel cell science and technology. New Delhi (India): Anamaya Publishers, 2007, pp. 284—329. DOI: 10.1007/978-0-387-68815-2
3. Yamamoto O., Arachi Y., Sakai H., Takeda Y., Imanishi N., Mizutani Y., Kawai M., Nakamura Y. Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics, 1998, vol. 4, no. 5–6, pp. 403—408. DOI: 10.1007/BF02375884
4. Kuzminov Yu. S., Lomonova E. E., Osiko V. V. Tugoplavkie materialy iz kholodnogo tiglya [Refractory materials from a cold crucible]. Мoscow: Nauka, 2004. 369 p. (In Russ.)
5. Arachi Y., Sakai H., Yamamoto O., Takeda Y., Imanishai N. Electrical conductivity of the ZrO—Ln2O3 (Ln = lanthanides) system. Solid State Ionics, 1999, vol. 121, no. 1–4, pp. 133—139. DOI: 10.1016/S0167-2738(98)00540-2
6. Kilner J. A., Brook R. J. A study of oxygen ion conductivity in doped non−stoichiometric oxides. Solid State Ionics, 1982, vol. 6, no. 3, pp. 237—252. DOI: 10.1016/0167-2738(82)90045-5
7. Kilner J. A., Waters C. D. The effects of dopant cation−oxygen vacancy complexes on the anion transport properties of non−stoichiometric fluorite oxides. Solid State Ionics, 1982, vol. 6, no. 3, pp. 253—259. DOI: 10.1016/0167-2738(82)90046-7
8. Goff J. P., Hayes W., Hull S., Hutchings M. T., Clausen K. N. Defect structure of yttria−stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B, 1999, vol. 59, no. 22, pp. 14202—14219. DOI: 10.1103/PhysRevB.59.14202
9. Yugami H., Koike A., Ishigame M., Suemoto T. Relationship between local structures and ionic conductivity in ZrO2−Y2O3 studied by site−selective spectroscopy. Phys. Rev. B, 1991, vol. 44, no. 17, pp. 9214—9222. DOI: 10.1103/PhysRevB.44.9214
10. Catlow C. R. A. Transport in doped fluorite oxides. Solid State Ionics, 1984, vol. 12, pp. 67—73. DOI: 10.1016/0167-2738(84)90131-0
11. Zavodinsky V. G. The mechanism of ionic conductivity in stabilized cubic zirconia. Phys. Solid State, 2004, vol. 46, no. 3, pp. 453—457. DOI: 10.1134/1.1687859
12. Tokiy N. V., Perekrestov B. I., Savina D. L., Danilenko I. A. Concentration and temperature dependences of the oxygen migration energy in yttrium−stabilized zirconia. Phys. Solid State, 2011, vol. 53, pp. 1827—1901. DOI: 10.1134/S1063783411090290
13. Ding H., Virkar A. V., Liu F. Defect configuration and phase stability of cubic versus tetragonal yttria−stabilized zirconia. Solid State Ionics, 2012, vol. 215, pp. 16—23. DOI: 10.1016/j.ssi.2012.03.014
14. Li X., Hafskjold B. Molecular dynamics simulations of yttrium−stabilized zirconia. J. Phys.: Condens. Matter.,1995, vol. 7, pp. 1255—1271. DOI: 10.1088/0953-8984/7/7/007
15. Eichler A. Tetragonal Y−doped zirconia: Structure and ion conductivity. Phys. Rev. B., 2001, vol. 64, no. 17, pp. 174103-1—174103-8. DOI: 10.1103/PhysRevB.64.174103
16. Dexpert−Ghys J., Faucher M., Caro P. Site selective spectroscopy and structural analysis of yttria−doped zirconias. J. Solid State Chem., 1984, vol. 54, no. 2, pp. 179—192. DOI: 10.1016/0022-4596(84)90145-2
17. Voron’ko Yu. K., Zufarov M. A., Sobol’ A. A., Ushakov S. N., Tsymbal L. I. Spectroscopy and structure of Eu3+ centers in partially stabilized zirconia and hafnia. Inorganic Materials, 1997, vol. 33, no. 4, pp. 379—389.
18. Borik, M. A., Volkova T. V., Kuritsyna I. E., Lomonova E. E., Myzina V. A., Ryabochkina P. A., Tabachkova N. Yu. Features of the local structure and transport properties of ZrO2−Y2O3−Eu2O3 solid solutions. J. Alloys Compounds, 2019, vol. 770, pp. 320—326. DOI: 10.1016/j.jallcom.2018.08.117
19. Borik M. A., Lomonova E. E., Osiko V. V., Panov V. A., Porodinkov O. E., Vishnyakova M. A., Voron’ko Yu. K., Voronov V, vol. Partially stabilized zirconia single crystals: growth from the melt and investigation of the properties. J. Cryst Growth, 2005, vol. 275, no. 1–2, pp. e2173—e2179. DOI: 10.1016/j.jcrysgro.2004.11.244
20. Andrievskaya E. R. Fazovye ravnovesiya v sistemakh oksidov gafniya, tsirkoniya, ittriya s oksidami redkozemel’nykh elementov [Phase equilibria in systems of oxides of hafnium, zirconium, yttrium with oxides of rare−earth elements]. Kiev. Naukova Dumka, 2010, 472 p. (In Russ.)
21. Yashima M., Sasaki S., Kakihana M., Yamaguchi Y., Arashi H., Yoshimura M. Oxygen−induced structural change of the tetragonal phase around the tetragonal−cubic phase boundary in ZrO2−YO1.5 solid solutions. Acta Cryst. B, 1994, vol. 50, no. 6, pp. 663—672. DOI: 10.1107/S0108768194006257
22. Judd B. R. Three−particle operators for equivalent electrons. Phys. Rev., 1966, vol. 141, no. 1, pp. 4—14. DOI: 10.1103/PhysRev.141.4
23. Krupke, W. F. Optical absorption and fluorescence intensities in several rare−earth−doped Y2O3 and LaF3 single crystals. Phys. Rev., 1966, vol. 145, no. 1, pp. 325—337. DOI: 10.1103/PhysRev.145.325
24. Bol’shakova E. V., Malov A. V., Ryabochkina P. A., Ushakov S. N., Nishchev K. N. Intensities of hypersensitive transitions in garnet crystals doped with Er3+ ions. Opt. Spectrosc., 2011, vol. 110, no. 6, pp. 910—916. DOI: 10.1134/S0030400X11060038
25. Borik M. A., Volkova T. V., Lomonova E. E., Myzina V. A., Ryabochkina P. A., Tabachkova N. Yu., Chabushkin A. N. Spectroscopy of optical centers of Eu3+ ions in partially stabilized and stabilized zirconium crystals. Opt. Spectrosc., 2017, vol. 122, no. 4, pp. 580—587. DOI: 10.1134/S0030400X17040087
Review
For citations:
Agarkova E.A., Borik M.A., Bublik V.T., Volkova T.V., Kulebyakin A.V., Kuritsyna I.E., Larina N.A., Lomonova E.E., Milovich F.O., Myzina V.A., Ryabochkina P.A., Tabachkova N.Yu. Influence of phase composition and local crystal structure on the transport properties of ZrO2−Y2O3 and ZrO2−Gd2O3 solid solutions. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(3):156-165. (In Russ.) https://doi.org/10.17073/1609-3577-2018-3-156-165