Influence of aluminum substitution on the fi eld of effective magnetic anisotropy and the degree of magnetic texture of anisotropic polycrystalline hexagonal ferrites of barium and strontium for substrates of microstrip devices of microwave electronics
https://doi.org/10.17073/1609-3577-2018-3-166-174
Abstract
Abstract. In this paper, the effect of Al3+ ions substitutions on the value of the effective magnetic anisotropy field НАeff and the degree of magnetic texture f of the anisotropic polycrystalline hexagonal barium and strontium ferrites were studied. The samples were obtained by the ceramic technology method and the texture was formed by pressing in a magnetic field. The sample preparation technology presented in detail. The batches of barium hexaferrites were synthesized with the concentration of Al3+ ions: 0.9; 1.4; 2.5 and 2.6 formula units while strontium hexaferrites had Al3+ concentration of 0.1 formula units. It has been shown that by this technology barium and strontium hexaferrites with high value of (in range of 19—35 kOe) and with f = 80—83% could be obtained. The achieved values of НАeff and f could be sufficient for the production of substrates for microstrip microwave devices in millimeter−wave region.
For the first time a raise in the degree of magnetic texture of polycrystalline barium hexaferrites with an increase of concentration of Al3+ ions were detected; a slight (5.5—5.8%) magnetic texture of isotropic strontium hexaferrites was also detected. The achieved results discussed in detail. For studied hexaferrites the mechanism of magnetic texture formation during the process of synthesis is proposed.
Keywords
About the Authors
S. V. ShcherbakovRussian Federation
Cand. Sci. (Eng.), Deputy General Ddirector — Director of Science
2A, Vokzalnaya Str., Fryazino, Moscow Region 141190, Russia
A. G. Nalogin
Russian Federation
Cand. Sci. (Eng.), Head of Scientific Industrial Complex–9
2A, Vokzalnaya Str., Fryazino, Moscow Region 141190, Russia
V. G. Kostishin
Russian Federation
Dr. Sci. (Phys.−Math.), Professor, Head of Department of «Technology for Electronic Materials»
4 Leninsky Prospekt, Moscow 119049, Russia
A. A. Alekseev
Russian Federation
Head of Sector 91
2A, Vokzalnaya Str., Fryazino, Moscow Region 141190, Russia;
4 Leninsky Prospekt, Moscow 119049, Russia
E. A. Belokon
Russian Federation
Engineer
2A, Vokzalnaya Str., Fryazino, Moscow Region 141190, Russia;
4 Leninsky Prospekt, Moscow 119049, Russia
I. M. Isaev
Russian Federation
Cand. Sci. (Eng.), Vice-Rector
4 Leninsky Prospekt, Moscow 119049, Russia
References
1. Shcherbakov S. V. The development of microwave electronics in the framework of the implementation of state programs. Materialy VI−i Vserossiiskoi nauchno−tekhnicheskoi konferentsii «Elektronika i mikroelektronika SVCh» = Proceedings of the VIth All−Russian Scientific−Technical Conference «Electronics and Microelectronics of Microwave». St. Petersburg: SPbGETU «LETI», 2017, pp. 15—23. (In Russ.)
2. Maltsev P., Shakhnovich I. The basis of future electronics. Trends and markets. Electronics: Science, Technology, Business, 2015, no. 8, pp. 72—84. (In Russ.). URL: http://www.electronics.ru/files/article_pdf/4/article_4906_855.pdf
3. Harinskaya M. Microwave ferrite materials. Well how can microwave devices do without them? Electronics: Science, Technology, Business, 2000, no. 1, pp. 24—27. (In Russ.). URL: http://www.electronics.ru/files/article_pdf/1/article_1518_892.pdf
4. Letyuk L. M., Kostishin V. G., Gonchar A. V. Tekhnologiya ferritovykh materialov magnitoelektroniki [Technology of ferrite materials of magnetoelectronics]. Moscow: MISiS, 2005, 352 p. (In Russ.)
5. Antsiferov V. N., Letyuk L. M., Andreev V. G., Gonchar A. V., Dubrov A. N., Kostishyn V. G., Satin A. I. Problemy poroshkovogo materialovedeniya. Chast’ V. Tekhnologiya proizvodstva poroshkovykh ferritovykh materialov [Problems of powder materials. Part V. The technology of production of powdered ferrite materials]. Ekaterinburg: Uro RAN, 2005. 408 p. (In Russ.)
6. Yakovlev Yu. M., Gendelev S. Sh. Monokristally ferritov v radioelektronike [Single crystals of ferrites in radio electronics]. Moscow: Sovetskoe radio, 1975, 360 p. (In Russ.)
7. Kostishin V. G., Chitanov D. N., Nalogin A. G., Alekseev A. A., Timofeev A. V., Adamtsev A. Y., Andreev V. G., Ursulyak N. D. Effects of base composition and dopants on the properties of hexagonal ferrites. Russian J. Inorganic Chemistry, 2016, vol. 61, no. 3, pp. 279—283. DOI: 10.1134/S0036023616030116
8. Trukhanov A. V., Trukhanov S. V., Kostishin V.G., Panina L. V., Salem M. M., Kazakevich I. S., Krivchenya D. A., Turchenko V. A., Kochervinskii V. V. Multiferroic properties and structural features of M−type Al−substituted barium hexaferrites. Phys. Solid State, 2017, vol. 59, no. 4, pp. 737—745. DOI: 10.1134/S1063783417040308
9. Trukhanov A. V., Trukhanov S. V., Panina L. V., Kostishyn V. G., Kazakevich I. S., Trukhanov An. V., Trukhanova E. L., Natarov V. O., Turchenko V. A., Salem M. M., Balagurov A. M. Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Mag. Mag. Mater., 2017, vol. 426, pp. 487—496. DOI: 10.1016/j.jmmm.2016.10.140
10. Trukhanov A. V., Trukhanov S. V., Panina L. V., Kostishyn V. G., Chitanov D. N., Kazakevich I. S., Trukhanov A. V., Turchenko V. A., Salem M. M. Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics. Ceramics International, 2017, vol. 43, no. 7, pp. 5635—5641. DOI: 10.1016/j.ceramint.2017.01.096
11. Trukhanov S. V., Trukhanov A. V., Kostishyn V. G., Panina L. V., Turchenko V. A., Kazakevich I. S., Trukhanov An. V., Trukhanova E. L., Natarov V. O., Balagurov A. M. Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Mag. Mag. Mater., 2017, vol. 426, pp. 554—562. DOI: 10.1016/j.jmmm.2016.10.151
12. Trukhanov A. V., Trukhanov S. V., Kostishyn V. G., Panina L. V., Korovushkin V. V., Turchenko V. A, Vinnik D. A., Yakovenko E. S., Zagorodnii V. V., Launetz V. L., Oliynyk V. V., Zubar T. I., Tishkevich D. I., Trukhanova E. L. Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Mag. Mag. Mater., 2018, vol. 462, pp. 127—135. DOI: 10.1016/j.jmmm.2018.05.006
13. Trukhanov A. V., Kostishyn V. G., Panina L. V., Korovushkin V. V., Turchenko V. A., Thakur P., Thakur A., Yang Y., Vinnik D. A., Yakovenko E. S., Matzui L. Yu., Trukhanova E. L., Trukhanov S. V. Control of electromagnetic properties in substituted M−type hexagonal ferrites. J. Alloys Compd., 2018, vol. 754, pp. 247—256. DOI: 10.1016/j.jallcom.2018.04.150
14. Trukhanov A. V., Panina L. V., Trukhanov S. V., Kostishyn V. G., Turchenko V. A., Vinnik D. A., Zubar T. I., Yakovenko E. S., Macuy L. Yu., Trukhanova E. L. Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19. Ceramics International, 2018, vol. 44, no. 12, pp. 13520—13529. DOI: 10.1016/j.ceramint.2018.04.183
15. Kostishyn V., Korovushkin V., Isaev I., Trukhanov A. Study of the features of the magnetic and crystal structures of the BaFe12−xAlxO19 and BaFe12−xGaxO19 substituted hexagonal ferrites. Eastern−European J. Enterprise Technologies, 2017, vol. 1, no. 5, pp. 10—15. DOI: 10.15587/1729-4061.2017.91409
16. Petrova I. I. Analysis of the effect of diamagnetic and paramagnetic ions on the properties of hexaferrites. Elektronnaya tekhnika. Ser. Materialy, 1990, no. 4, pp. 28—32 (In Russ.)
17. Grigorieva L. N., Petrova I. I. Properties of highly anisotropic M−type hexaferrites. Elektronnaya tekhnika. Ser. Materialy, 1991, no. 1, pp. 18—21. (In Russ.)
18. Chechernikov V. I. Magnitnye izmereniya [Magnetic measurements]. Moscow: Izd−vo MGU, 1969, 388 p. (In Russ.)
19. Semenov A. S., Semenov M. G., Myasnikov A. V., Nalogin A. G. Metrological support for the development of ferrite materials for the centimeter and millimeter wavelength ranges. Materialy VI−i Vserossiiskoi nauchno−tekhnicheskoi konferentsii «Elektronika i mikroelektronika SVCh» = Proceedings of the VIth All−Russian Scientific−Technical Conference “Electronics and Microelectronics of Microwave”. St. Petersburg: SPbGETU «LETI», 2017, pp. 27—31. (In Russ.)
20. Rathenau G. W., Smit J., Stuyts A. L. Ferromagnetic properties of hexagonal iron−oxide compounds with and without a preferred orientation. Zeitschrift für Physik, 1952, vol. 133, no. 1–2, pp. 250—260. DOI: 10.1007/BF01948700
21. Tokar M. Increase in preferred orientation in lead ferrite by firing. J. Amer. Cer. Soc., 1968, vol. 51, no. 10, pp. 601. DOI: 10.1111/j.1151−2916.1968.tb13331.x
22. Reed J. S., Fulrath R. M. Characterization and sintering behavior of Ba and Sr ferrites. J. Amer. Cer. Soc., 1973, vol. 56, no. 4, pp. 207—211. DOI: 10.1111/j.1151−2916.1973.tb12458.x
23. Kaneva I. I., Kostishin V. G., Andreev V. G., Chitanov D. N., Nikolaev A. N., Kislyakova E. I. Оbtaining barium hexaferrite brand 7BI215 with isotropic properties. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2014, no. 3, pp. 183—188. (In Russ.). DOI: 10.17073/1609-3577-2014-3-183-188
24. Isaev I. M. Radiation−thermal sintering in a beam of fast electrons polycrystalline hexagonal ferrites BaFe12O19 and BaFe12−х(Al,Ni,Ti,Mn)хO19 for permanent magnets and substrates of microstrip microwave electronics devices. Summary of Cand. Diss. (Eng.). Moscow, 2017, 31 p. (In Russ.)
Review
For citations:
Shcherbakov S.V., Nalogin A.G., Kostishin V.G., Alekseev A.A., Belokon E.A., Isaev I.M. Influence of aluminum substitution on the fi eld of effective magnetic anisotropy and the degree of magnetic texture of anisotropic polycrystalline hexagonal ferrites of barium and strontium for substrates of microstrip devices of microwave electronics. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(3):166-174. (In Russ.) https://doi.org/10.17073/1609-3577-2018-3-166-174