Calculation of heat transfer in nanoscale heterostructures
https://doi.org/10.17073/1609-3577-2018-3-175-181
Abstract
About the Authors
K. K. AbgarianRussian Federation
Karine K. Abgarian: Cand. Sci. (Phys.−Math.), Head of the Department (1,2)
40 Vavilov Str., Moscow 119333, Russia;
4 Volokolamskoe Shosse, Moscow 125993, Russia
I. S. Kolbin
Russian Federation
Ilya S. Kolbin: Cand. Sci. (Phys.−Math.), Researcher
40 Vavilov Str., Moscow 119333, Russia
References
1. Njuguna J., Pielichowski K. Polymer nanocomposites for aerospace applications: properties. Adv. Eng. Mater., 2003, vol. 5, no. 11, pp. 769—778. DOI: 10.1002/adem.200310101
2. Endo M., Strano M. S., Ajayan P. M. Potential applications of carbon nanotubes. In: Carbon Nanotubes. Advanced Topics in the Synthesis, Structure, Properties and Applications. Berlin; Heidelberg: Springer−Verlag, 2008, pp. 13—62. DOI: 10.1007/978-3-540-72865-8_2
3. Zweben C. Advances in composite materials for thermal management in electronic packaging. JOM, 1998, vol. 50, no. 6, pp. 47—51. DOI: 10.1007/s11837−998−0128−6
4. Nitin Mehra, Liwen Mu, Tuo Ji, Xutong Yang, Jie Kong, Junwei Gu, Jiahua Zhu. Thermal transport in polymeric materials and across composite interfaces. Appl. Mater. Today, 2018, vol. 12, pp. 92—130. DOI: 10.1016/j.apmt.2018.04.004
5. Norris P. M., Le N. Q., Baker C. H. Tuning phonon transport: from interfaces to nanostructures. J. Heat Transfer, 2013, vol. 135, no. 6, p. 061604. DOI: 10.1115/1.4023584
6. Tavman I. H., Akinci H. Transverse thermal conductivity of fiber reinforced polymer composites. Int. Commun. Heat Mass Transfer, 2000, vol. 27, no. 2, pp. 253—261. DOI: 10.1016/S0735-1933(00)00106-8
7. Kochetov R., Korobko A. V., Andritsch T., Morshuis P. H. F., Picken S. J., Smit J. J. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D: Appl. Phys., 2011, vol. 44, no. 39, p. 395401. DOI: 10.1088/0022−3727/44/39/395401
8. Zeng L., Chiloyan V., Huberman S., Maznev A. A, Peraud J.−P. M., Hadjiconstantinou N. G., Nelson K. A., Chen G. Monte Carlo study of non−diffusive relaxation of a transient thermal grating in thin membranes. Appl. Phys. Lett., 2016, vol. 108, no. 6, p. 063107. DOI: 10.1063/1.4941766
9. Vasilyev A. N., Kolbin I. S., Reviznikov D. L. Meshfree computational algorithms based on normalized radial basis functions. In: Advances in neural networks – ISNN 2016. Lecture Notes in Computer Science. Springer International Publishing, 2016, vol. 9719, pp. 583—591. DOI: 10.1007/978-3-319-40663-3_67
10. Kolbin I. S., Reviznikov D. L. The solution of problems of mathematical physics using normalized radial basis networks. Neurocomputers, 2012, no. 2, pp. 12—19. (In Russ.)
11. Vasilev A. N., Tarkhov D. A. Neirosetevoe modelirovanie. Printsipy, algoritmy, prilozheniya [Neural network modelling principles, algorithms, applications]. St. Petersburg: Izdatel’stvo Politekhnicheskogo universiteta, 2009, 528 p. (In Russ.)
12. Chen W. New RBF Collocation Methods and Kernel RBF with Applications. In: Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering. Berlin; Heidelberg: Springer, 2003, vol. 26, pp. 75—86. DOI: 10.1007/978-3-642-56103-0_6
13. Vorob’ev D. A., Hvesyuk V. I. Calculation method for non−stationary heating of nano−structures. Science and Education of Bauman MSTU, 2013, pp. 541—550. (In Russ.). DOI: 10.7463/0913.0617255
14. Haykin S. S. Neural Networks: A Comprehensive Foundation. Prentice−Hal, 1999, 874 p.
15. Benaim M. On the functional approximation with normalized Gaussian units. Neural Computation, 1994, vol. 6, no. 2, pp. 319—333. DOI: 10.1162/neco.1994.6.2.319
16. Bugmann G. Normalized Gaussian radial basis function networks. Neurocomputing, 1998, vol. 20, no. 1−3, pp. 97—110. DOI: 10.1016/S0925-2312(98)00027-7
17. Bugmann G., Koay K. L., Barlow N., Phillips M., Rodney D. Stable encoding of robot trajectories using normalised radial basis functions: Application to an autonomous wheelchair. Proc. 29th Int. Symposium on Robotics (ISR). Birmingham (UK), 1998, pp. 232—235.
18. Hardy R. L. Multiquadric equations of topography and other irregular surfaces. J. Geophysical Research, 1971, vol. 76, no. 8, pp. 1905—1915. DOI: 10.1029/JB076i008p01905
19. Hardy R. L. Theory and applications of the multiquadric− biharmonic method 20 years of discovery 1968–1988. Computers & Mathematics with Applications, 1990, vol. 19, no. 8−9, pp. 163—208. DOI: 10.1016/0898-1221(90)90272-L
20. Kansa E. J. Multiquadrics — A scattered data approximation scheme with applications to computational fluid−dynamics — I surface approximations and partial derivative estimates. Computers & Mathematics with Applications, 1990, vol. 19, no. 8−9, pp. 127—145. DOI: 10.1016/0898-1221(90)90270-T
21. Kansa E. J. Multiquadrics — A scattered data approximation scheme with applications to computational fluid−dynamics — II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & Mathematics with Applications, 1990, vol. 19, no. 8−9, pp. 147—161. DOI: 10.1016/0898-1221(90)90271-K
22. Sarra S. A., Kansa E. J. Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations. Advances in Computational Mechanics, 2009, vol. 2. URL: http://www.techscience.com/acm/2009/v2.html (accessed: 20.12.2016).
23. Honghoon Jang, Anjin Park, Keechul Jung. Neural network implementation using CUDA and OpenMP // Digital Image Computing: Techniques and Applications. 2008. DOI: 10.1109/DICTA.2008.82
24. Cramer T., Schmidl D., Klemm M., an Mey D. OpenMP programming on Intel® Xeon PhiTM coprocessors: An early performance comparison. Many−core Applications Research Community Symposium. Aachen (Germany), 2012.
Review
For citations:
Abgarian K.K., Kolbin I.S. Calculation of heat transfer in nanoscale heterostructures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(3):175-181. (In Russ.) https://doi.org/10.17073/1609-3577-2018-3-175-181