Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Application of methods investigation of materials and structures of electronics in development of medical titanium endoprostheses with increased fibrointegration efficiency

https://doi.org/10.17073/1609-3577-2017-4-262-271

Abstract

Titanium alloys approved for clinical use in our country are widely used in traumatology, maxillofacial surgery and stomatology, mainly for the manufacture of various endoprostheses and dental implants, i.e. structures, introduced and installed in the bone and soft tissues of human body, able to both bio-integrate and bio-adaptable in the tissues of human body. 
In the field of medical materials science and in particular in the development of medical products based on titanium and its alloys and various coatings on the surface of such products, modern methods and modern equipment developed for the electronics industry are successfully used.
In this paper, the methods of research of materials and structures of electronics used in the field of medical technology and specifically in the development of medical titanium endoprostheses have made it possible to develop the basics of the technology for obtaining optimal microrelief on the surface of titanium endoprostheses intended for engraftment in soft tissues (i.e. fibrointegrable) with bioactive coating of titanium dioxide TiO2 with an anatase structure obtained by atomic-layer deposition. The research aimed at revealing the optimal surface treatment of such endoprostheses in order to achieve improved fibrointegration properties in their use in maxillofacial surgery has been carried out.
It has been shown that high adhesion and fibrointegration between the titanium endoprosthesis and connective tissue are achieved with an average surface roughness (4—8)⋅102 nm, root-mean-square roughness 5⋅102—1⋅103 nm, profile height (3—6)⋅103 nm, and thickness bioactive coating in the order of 10 nm.

About the Authors

A. I. Shaikhaliev
I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation

2-4 Bolshaya Pirogovskaya Str., Moscow 119991

Astemir I. Shaikhaliev



A. A. Polisan
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Andrey A. Polisan



S. Yu. Ivanov
I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation

2-4 Bolshaya Pirogovskaya Str., Moscow 119991

Sergey Yu. Ivanov



D. A. Kiselev
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Dmitry A. Kiselev



Yu. N. Parkhomenko
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Yuriy N. Parkhomenko



M. D. Malinkovich
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Mikhail D. Malinkovich



I. V. Cherkesov
I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation

2-4 Bolshaya Pirogovskaya Str., Moscow 119991

Igor V. Cherkesov



A. A. Temirov
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Alexander A. Temirov



S. A. Molchanov
Conmet LTD
Russian Federation

24/1 Onezhskaya Str., Moscow 125413

Sergey A. Molchanov



References

1. Liu X., Chu P. K., Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. A, 2004, vol. 47, pp. 49—121. DOI: 10.1016/j.mser.2004.11.001

2. Brunnette D. M., Tengvall P., Textor M., Thomsen P. (Eds.) Titanium in Medicine. Materials Science, Surface Science, Engineering, Biological Responses and Medical Applications. Berlin (Germany): Springer, 2001, 1019 p.

3. Steinemann S. G. Titanium — the materials of choice? Periodontology. 2000. 1998, vol. 17, pp. 7—21. DOI: 10.1111/j.1600-0757.1998.tb00119.x

4. Hauert R., Thorwarth G. B., Thorwarth K. An overview on diamond-like carbon coatings in medical applications. Surface and Coatings Technology, 2013, vol. 233, pp. 119—130, DOI: 10.1007/s10853-015-8833-3

5. Roy R. K, Lee K. R Biomedical applications of diamond-like carbon coatings: a review. J. Biomed. Mater. Res B Appl. Biomater, 2007, vol. 83, no. 1, pp. 72—84. DOI: 10.1002/jbm.b.30768

6. Hauert R. A. A review of modified DLC coatings for biological applications, Diamond and Related Materials,2003. vol. 12, no. 3, pp. 583—589, DOI: 10.1016/S0925-9635(03)00081-5

7. Poole Ch., Owens F. Nanotekhnologii [Nanotechnology]. Moscow: Tekhnosfera, 2006, 327 p. (In Russ.)

8. Heinrichs J., Jarmar T., Rooth M., Enqvist H., In vitro bioactivity of atomic layer deposited titanium dioxide on titanium and silicon substrates. Key Engineering Materials. 2008, vol. 361–363, pp. 689—692. DOI: 10.4028/www.scientific.net/KEM.361-363.689

9. Alekhin A. P., Markeev A. M., Tetyukhin D. V., Kozlov E.N., Stepanova M.A. Influence of physical and chemical properties of titanium implant surface and methods of their modification on osseointegration indices. Klinicheskaya stomatologiya = Clinical dentistry. 2009, no 3, pp. 3—5.(In Russ.)

10. Alekhin A. P., Vrublevskii A. I., Markeev A. M., Romanov R. I., Nevolin V. N. On the structure and properties of amorphous carbon films formed by the magnetoactive microwave plasma deposition. Poverkhnost’ = Surface.1996, no. 10, p. 47.(In Russ.)

11. Zhao G., Schwartz Z., Wieland M., Rupp F., Geis-Gerstorfer J., Cochran D.L.,Boyan B.D., High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res. 2005. vol. 74A, pp. 49—58, DOI: 10.1002/jbm.a.30320

12. Dai Yamamoto, Ikki Kawai, Kensuke Kuroda, Ryoichi Ichino, Masazumi Okido, Azusa Seki, Osteoconductivity and Hydrophilicity of TiO2 coatings on Ti substrates prepared by different oxidizing processes, Bioinorganic Chemistry and Applications, 2012, vol. 2012, Article ID 495218.

13. Russian state standard - GOST19807-91. Wrought titanium and titanium alloys. Grades

14. ASTMF 67Gr3 Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700)

15. Alekhin A. P., Boleiko G. M., Gudkova S. A., Markeev A. M., Sigarev A. A., Toknova V. F., Kirilenko A. G., Lapshin R. V., Kozlov E. N., Tetyukhin D. V. Synthesis of biocompatible surfaces by nanotechnology methods. Rossiiskie nanotekhnologii = Russian nanotechnology.2010, vol. 5, no. 9–10, pp. 128—136.(In Russ.)

16. Shaikhaliev A. I., Krasnov M. C., Yamskova O. V., Sventskaya N. V. Influence of the chemical nature of implantation materials on the course of regenerative processes in the bone bed. Biofizika = Biophysics.2016, vol. 61, no. 4, pp. 813—822.(In Russ.)

17. Shaikhaliev A. I., Stretskiy G. M., Krasnov M. S., Rybakova E. Yu., Tikhonov V. E., Yamskova V. P., Yamskov I. A. Effect of new compositions on restoration of bone defects in rats in experiment. Fundamental’nye issledovaniya. 2013, no. 9-2, pp. 271—276. (In Russ.)

18. Russian state standard — GOST 25142-82. Surface roughness. Terms and definitions. (In Russ.)

19. ISO 4287:1997, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters. (In Russ.)

20. ASME B46.1-1995 Surface Texture (Surface Roughness, Waviness, and Lay).

21. Russian state standard — GOST R ISO 10993.5-99. Medical devices. Biological evaluation of medical devices. Pt 5. Tests for cytotoxicity: in vitro methods. (In Russ.)

22. Tsentr kollektivnogo pol’zovaniya Materialovedenie i metallurgiya [Center for collective use “Materials Science and Metallurgy»] NUST MISiS. (In Russ.). URL: http://misis.ru/business/materials-science/


Review

For citations:


Shaikhaliev A.I., Polisan A.A., Ivanov S.Yu., Kiselev D.A., Parkhomenko Yu.N., Malinkovich M.D., Cherkesov I.V., Temirov A.A., Molchanov S.A. Application of methods investigation of materials and structures of electronics in development of medical titanium endoprostheses with increased fibrointegration efficiency. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(4):262-271. https://doi.org/10.17073/1609-3577-2017-4-262-271

Views: 715


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)