Opportunity to use inert gas flow for control of qualitative characteristics of the grown silicon single crystals
https://doi.org/10.17073/1609-3577-2019-3-158-167
Abstract
of 45° to the surface of the melt in the form of jets from nozzles arranged in a ring. This flow initiates the formation of a region of turbulent melt flow, which isolates the crystallization front from convective flows enriched with oxygen, and also enhances the evaporation of carbon from the melt. It is confirmed that the oxygen evaporated from the melt (in the form of SiO) is a «transport» for non-volatile carbon. Carrying out industrial processes showed that the carbon content in the grown single crystals can be significantly reduced, up to values smaller than in the feedstock. In single crystals grown using two argon streams, an increased macro- and micro-uniformity of the oxygen distribution, a significantly larger crystal length with a given, constant oxygen concentration, were also recorded. Achieving a carbon concentration of 5 to 10 times less than in the feedstock is possible with small amounts of argon for melting (15—20 nl/min compared to 50—80 nl/min used in conventional processes. The use of an additional argon flow, which has an outflow intensity 10 times lower than that of the main flow, does not distort the nature of the flow around the single crystal surface (“axial”), does not disrupt the growth of a dislocation-free single crystal, does not increase the density of microdefects, which indicates the absence of changes in temperature gradients and thermal shock leading to thermal stresses in a single crystal.
Keywords
About the Authors
T. V. KritskayaUkraine
Tatyana V. Kritskaya: Dr. Sci. (Eng.), Prof., Head of Department
V. N. Zhuravlev
Ukraine
Vladimir N. Zhuravlev: Dr. Sci. (Eng.), Chief of Sector
V. S. Berdnikov
Russian Federation
Vladimir S. Berdnikov: Dr. Sci. (Phys.-Math.), Header of Laboratory
References
1. Kritskaya T. V. Sovremennye tendentsii polucheniya kremniya dlya ustroistv elektroniki [Current trends in the production of silicon for electronic devices]. Zaporozhye: Izd-vo ZGIA, 2013, 353 p. (In Russ.)
2. Tasit Murki. Zakon Mura protiv nanomerov [Moore’s law against nanomeres]. (In Russ.). URL: http://subscribe.ru/archive/comp.news.ixbt/201111/02111527.html
3. Mozer A. P. Silicon wafer technology. Status and overlook at the millennium and a decade beyond. Solid State Phenomena, 1999, vol. 69–70, pp. 1—12. DOI: 10.4028/www.scientific.net/SSP.69-70.1
4. Fistul V. I. Fizika i materialovedenie poluprovodnikov s glubokimi urovnyami [Physics and materials science of semiconductors with deep levels]. Moscow: Metallurgiya, 1992, 240 p. (In Russ.)
5. Barraclough K. G. Oxygen in Czochralski silicon for ULSI. J. Cryst. Growth, 1990, vol. 99, no. 1–4, pt 2, pp. 654—664. DOI: 10.1016/S0022-0248(08)80002-4
6. Monkowski J. R. Gettering processes for defect control. Solid State Technology, 1981, vol. 24, no. 7, pp. 44—51.
7. Petlitsky A. N., Ponomar V. N., Tarasik M. I., Yanchenko A. M. Formation of a reproducible getter in silicon. Izv. vuzov. Tsvetnaya metallurgiya. 1987, no. 5, pp. 50—54. (In Russ.)
8. Petlitsky A. N. Osobennosti getterirovaniya primesei v kislorodsoderzhashchem kremnii [Features of the gettering of impurities in oxygen-containing silicon]. Summary Diss. Cand. Sci. (Phys.-Math.). Minsk, 2004, 21 p. (In Russ.)
9. Voronkov V. V., Falster R. Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon. J. Cryst. Growth, 1999, vol. 204, no. 4, pp. 464—474. DOI: 10.1016/S0022-0248(99)00202-X
10. Ravi K. V. Materials quality and materials cost. Are they on a collision course? Solid State Phenovena, 1999, vol. 69–70, pp. 103—110. DOI: 10.4028/www.scientific.net/SSP.69-70.103
11. Puzanov N. I., Eidenzon A. M. Selective interaction of twin boundaries with vacancies and self-interstitials in dislocation-free Si tetracrystals. J. Cryst. Growth, 1997, vol. 178, no. 4, pp. 459—467. DOI: 10.1016/S0022-0248(97)00005-5
12. Dashevskii M. Ya. Osobennosti tekhnologii vyrashchivaniya sovershennykh i odnorodnolegirovannykh monokristallov kremniya [Features of the technology of growing perfect and uniformly doped silicon single crystals]. Nauchn. shk. mosk. gos. in-ta stali i Splavov: 75 let: Stanovlenie i razvitie. Moscow: Izd-vo MISiS, 1997, pp. 462—468. (In Russ.)
13. Tekhnologiya poluprovodnikovogo kremniya [Technology of semiconductor silicon]. Ed. E. S. Falkevich. Moscow: Metallurgiya, 1992, 408 p. (In Russ.)
14. Mevius V. I., Pulner E. O. Investigation of the flow of silicon melt in a floating crucible. Tsvetnye metally, 1985, no. 9, pp. 56—58. (In Russ.)
15. Tairov Yu. M., Tsvetkov V. F. Tekhnologiya poluprovodnikovykh i dielektricheskikh materialov [Technology of semiconductor and dielectric materials]. Moscow: Vysshaya shkola, 1990, 424 p. (In Russ.)
16. Patent 4040895 (USA). Control oxygen in silicon crystals. W. J. Patrick, W. A. Westdorp, 1977.
17. Verezub N. A., Lednev A. K., Myaldun A. Z., Polezhaev V. I., Prostomolotov A. I. Physical modeling of convective processes during crystal growth by the Czochralski method. Kristallografiya, 1999, vol. 44, no. 6, pp. 1125—1131. (In Russ.)
18. Verezub N. A., Zharikov E. V., Myaldun A. Z., Prostomolov A. I. Analysis of the effect of low-frequency vibrations on temperature pulsations in a melt during crystal growth by the Czochralski method. Kristallografiya, 1996, vol. 41, no. 2, pp. 354—361. (In Russ.)
19. Lyubalin M. D. Effect of parameters of the process of obtaining semiconductor crystals by the Czochralski method on the temperature of the melt and gas near the crystallization front. Tsvetnye metally, 1987, no. 3, pp. 66—68. (In Russ.)
20. Patent 2077615 (RF). Sposob vyrashchivaniya monokristallov kremniya [A method of growing silicon single crystals]. Z. A. Salnik, Yu. A. Miklyaev, 1997.
21. Software for optimization and process development of crystal growth from melt and solution. URL: www.str-soft.com
22. Müller G. Crystal growth from the melt. Convection and heterogeneity. Berlin; Heidelberg: Springer-Verlag, 1988, 138 p.
23. Berdnikov V. S., Vinokurov V. A., Vinokurov V. V., Gaponov V. A. The influence of convective heat transfer regimes in a crucible-melt-crystal system on a shape of the solidification front in Czochralski method. Teplovye protsessy v tekhnike = Thermal Processes in Engineering, 2011, vol. 3, no. 4, pp. 177—186. (In Russ.)
24. Shi D. Chislennye metody v zadachakh teploobmena [Numerical methods in heat transfer problems]. Moscow: Mir, 1988, 554 p. (In Russ.)
25. Kobeleva S. P., Anfimov I. M., Berdnikov V. S, Kritskaya T. V. Possible causes of electrical resistivity distribution inhomogeneity in Czochralski grown single crystal silicon. Modern Electronic Materials, 2019, vol. 5, no. 1, pp. 27—32. DOI: 10.3897/j.moem.5.1.46315
26. Gelfgat Yu. M. Rotating magnetic fields as a means to control the hydrodynamics and heat/mass transfer in the processes of bulk single crystal growth. J. Cryst. Growth, 1999, vol. 198–199, pt 1, pp. 165—165. DOI: 10.1016/S0022-0248(98)01192-0
27. Patent 6156119 (USA). Silicon single crystals and method for producing the same. H. Ryoji, J. Kouichi, O. Tomohiko, 1998.
28. Patent 6113688 (USA). Process for producing single crystal. K. Souroku, J. Makoto, 2000.
29. Tkacheva T. M., Gorin S. O., Laptev A. V. et al. Impurity heterogeneity and structure of dislocation-free silicon single crystals grown by the Czochralski method in a magnetic field. Svoistva legirovannykh poluprovodnikovykh materialov [Properties of doped semiconductor materials]. Moscow: Nauka, 1990, pp. 127—131. (In Russ.)
30. Handbook of semiconductor silicon technology. Ed. by W. C. O’Mara, R. B. Herring, L. P. Hunt. Park Ridge (New Jersey): NOYES Publications, 1990, 795 p.
31. Turovskii B. M. The effect of rotation of a crucible with a melt on the oxygen content in silicon crystals grown by the Czochralski method. Nauchnye trudy Giredmeta [Scientific works of Giredmet]. Vol. 25. Moscow: Metallurgiya, 1969, pp. 113—116. (In Russ.)
32. Evstratov I. Yu., Kalaev V. V., Nabokov V. N., Zhmakin A. I., Makarov Yu. N., Abramov A. G., Ivanov N. G., Rudinsky E. A., Smirnov E. M., Lowry S. A., Dornberger E., Virbulis J., Tomzig E., Ammon W. V. Global model of Czochralski silicon growth to predict oxygen content and thermal fluctuations at the melt-crystal interface. Microelectronic Engineering, 2001, vol. 56, no. 1–2, pp. 139—142. DOI: 10.1016/S0167-9317(00)00516-5
33. Kalaev V. V. Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400 mm diameter Si Cz crystal growth. J. Cryst. Growth, 2007, vol. 303, no. 1, pp. 203—210. DOI: 10.1016/j.jcrysgro.2006.11.345
34. Chen J.-C., Guo P.-C., Chang C.-H., Teng Y.-Y., Hsu C., Wang H.-M., Liu C.-C. Numerical simulation of oxygen transport during the Czochralski silicon crystal growth with a cusp magnetic field. J. Cryst. Growth, 2014, vol. 401, pp. 888—894. DOI: 10.1016/j.jcrysgro.2013.10.040
35. Chartier C. P., Sibley C. B. Czochralski silicon crystal growth at reduced pressures. Solid State Technology, 1975, vol. 8, no. 2, pp. 31—33.
36. Application 2548046 (Germany). Verfharen zur Herstellung einkristalliner Siliciumstäbe. Wacker-Chemitronic Ges. für Electronik-Grundstoffe mbit, H. Stock, A. Ellbrunner.
37. Xin Liu, Hirofumi Harada, Yoshiji Miyamura, Xue-feng Han, Satoshi Nakano, Shin-ichi Nishizawa, Koichi Kakimoto. Numerical analyses and experimental validations on transport and control of carbon in Czochralski silicon crystal growth. J. Cryst. Growth, 2018, vol. 499, pp. 8—12. DOI: 10.1016/j.jcrysgro.2018.07.020
38. Liu X., Nakano S., Kakimoto K. Development of carbon transport and modeling in Czochralski silicon crystal growth. Cryst. Res. Technol., 2017, vol. 52, no. 1, p. 1600221(11 pp.). DOI: 10.1002/crat.201600221
39. Torbjörn Carlberg. A quantitative model for carbon incorporation in Czochralski silicon melts. J. Electrochem. Soc., 1983, vol. 130, no. 1, pp. 168—171. DOI: 10.1149/1.2119648
40. Kritskaya T. V. Properties of silicon single crystals grown by the Czochralski method in controlling flows of surface heat and mass transfer. Teoriya i praktika metallurgii, 2005, no. 4–5, pp. 79—83. (In Russ.)
41. Patent 2076909 (RF). Sposob vyrashchivaniya monokristallov kremniya [A method of growing silicon single crystals]. Z. A. Salnik, Yu. A. Miklyaev, 1997.
42. Certificate of authorship 327429 (USSR). Sposob polucheniya monokristallov kremniya [A method of obtaining silicon single crystals] V. E. Bevz, N. N. Danileiko, A. I. Golubov, T. V. Kritskaya, B. L. Shklyar, E. S. Falkevich, 1990.
43. PVA TePla AG Germany. Crystal Growing Systems: Contigo Concept GmbH & Co. URL: www. pvatepla.com
44. Fistul V. I. Vzaimodeistvie primesei v poluprovodnikakh [Interaction of impurities in semiconductors]. Moscow: Nauka, 1999, 318 p. (In Russ.)
45. Vasiliev A. V., Baranov A. I. Defektno-primesnye reaktsii v poluprovodnikakh [Defective-impurity reactions in semiconductors]. Novosibirsk: Izd-vo SO RAN, 2001, 256 p. (In Russ.)
46. Fritzler K. B. Formirovanie ogranki i kristallicheskoi struktury kremniya, vyrashchennogo metodom bestigel’noi zonnoi plavki [The formation of the faceting and crystalline structure of silicon grown by the crucibleless zone melting method]. Diss. Cand. Sci. (Phys.-Math.). Novosibirsk, 2012, 149 p. (In Russ.)
47. Kritskaya T. V., Golovko O. P. Deformation defect formation during the growth of silicon single crystals by the Czochralski method. Metallurgy. Proceedings of the Zaporizhzhya State Engineering Academy. Zaporozhye: ZGIA, 2003, no. 7, pp. 64—66. (In Russ.)
48. Golovko O. P., Kritskaya T. V., Kutsev M. V. Formation of a polycrystalline region in heavily doped silicon single crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2001, no. 4, pp. 38—40. (In Russ.)
49. Kritskaya T. V., Zhuravlev V. N. Hypothesis of the process of growing single crystals with analytically predicted electrophysical parameters. Tezisy dokladov mezhdunarodnoi konferentsii «Kremnii-2016» = Abstracts of the International Conference «Silicon-2016». Novosibirsk, 2016, p. 91. (In Russ.)
50. Earth. Chronicles of Life: The rotation of the molecule was first filmed. (In Russ). URL: http://earth-chronicles.ru/news/2019-07-30-130983
Review
For citations:
Kritskaya T.V., Zhuravlev V.N., Berdnikov V.S. Opportunity to use inert gas flow for control of qualitative characteristics of the grown silicon single crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(3):158-167. (In Russ.) https://doi.org/10.17073/1609-3577-2019-3-158-167