Basic approaches to photoresist mask formation modeling in computational lithography
https://doi.org/10.17073/1609-3577-2019-4-279-289
Abstract
About the Authors
N. N. BalanRussian Federation
Nikita N. Balan: Cand. Sci. (Eng.), Design Engineer of the 1st category
V. V. Ivanov
Russian Federation
Vladidmir V. Ivanov: Deputy Head of the Photomask Design Department
A. V. Kuzovkov
Russian Federation
Alexey V. Kuzovkov: Design Engineer of the 1st category
E. V. Sokolova
Russian Federation
Evgenia V. Sokolova: Design Engineer of the 2nd category
E. S. Shamin
Russian Federation
Evgeniy S. Shamin: Junior Researcher
References
1. Mack C. A. Fundamental Principles of Optical Lithography: The Science of Microfabrication. John Wiley & Sons, 2007, 534 p.
2. Born M., Wolf E. Osnovy optiki [Fundamentals of Optics]. Moscow: Nauka, 1973, 722 p. (In Russ.)
3. Ma X., Arce G. R. Computational lithography. John Wiley & Sons, Inc, 2010, 226 p. DOI: 10.1002/9780470618943
4. Balan N. N., Ivanov V. V., Kuzovkov A. V. Illuminator shape as a key factor in the development of methods for diffraction image correction in projection photolithography for technologies of 65 nm and less. HOLOEXPO 2019. XVI International Conference on Holography and Applied Optical Technologies, 2019, pp. 208—215. (In Russ.)
5. Balan N. N., Ivanov V. V., Kuzovkov A. V., Shamin E. C. The place of phase-shifting photomasks in modern semiconductor technology. Electronic engineering. Series 3. Microelectronics, 2019, no. 2, pp. 54—63. (In Russ.)
6. Gornev E. S., Gushchin O. P., Myachin L. M. Technology of submicron optical projection lithography using photomasks with a phase shift. Abstracts of the All-Russian Scientific and Technical Complex «Micro- and Nanoelectronics 2001». Zvenigorod, 2001, vol. 1, pp. 2—5. (In Russ.)
7. Machin M., Savinskii N., Gutchin O., Prosii A., Gornev E. An integrated framework for aerial image simulation and proximity correction. Software Development for Process and Materials Design, Satellite Symposium of Nano and Giga Challenges in Microelectronics. Satellite (NGCM 2002). Moscow, 2002.
8. Krasnikov G. Ya., Sinyukov D. V. Problems and prospects of development of optical proximity correction methods for modern levels of technology. Proceedings of the Scientific Council of the Russian Academy of Sciences “New materials with specified functions and high-purity nanomaterials for creating an element base of information-computing and control machines”. Moscow, 2018, vol. 2, pp. 17—22. (In Russ.)
9. Rodionov I. A., Shakhnov V. A. Calculation of the values of the weight coefficients of topological structures for the calibration of lithographic models. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2010, no. S, pp. 149—160. (In Russ.)
10. Shamin E. S., Ipatova E. V., Kuzovkov A. V., Ivanov V. V., Balan N. N. Rule-based SRAF generation for two-dimensional topological structures wish MRC rules being considered: problems and solutions. Electronic engineering. Series 3: Microelectronics, 2019, no. 2, pp. 36—41. (In Russ.)
11. Savinsky N. G., Bernikov A. E., Kurchidis V. A., Gornev E. S., Gushchin O. P., Prosy A. D. Optical submicron lithography with phase-shifting templates. Proceedings of the Jubilee 2nd Scientific and Technical Conference of OJSC NIIME and Mikron «Development, Technology and Production of Semiconductor Microcircuits». Moscow; Zelenograd: Mikron-print, 1999, pp. 53—55. (In Russ.)
12. Gornev E. S., Gushchin O. P., Prosiy A. D., Savinsky N. G. Phase-shifting masks for low-aperture steppers. Proceedings of the 3rd scientific and technical conference of OJSC NIIME and Mikron «Development, technology and production of semiconductor microcircuits». Moscow; Zelenograd: OJSC NIIME and Mikron, 2000, vol. 1, pp. 115. (In Russ.)
13. Hopkins H. H. On the diffraction theory of optical images. Proc. R. Soc. Lond. A. Mathematical and Physical Sciences, 1953, vol. 217, no. 1130, pp. 408—432. DOI: 10.1098/rspa.1953.0071
14. Dill F. H., Neureuther A. R., Tuttle J. A., Walker E. J. Modeling projection printing of positive photoresists. IEEE Transactions on Electron Devices, 1975, vol. 22, no. 7, pp. 456—464. DOI: 10.1109/T-ED.1975.18161
15. Mack C. A. Process Specification: Measurement of the Positive Photoresist Parameters A, B, and C. Department of Defense, Fort Meade. MD 20755, 1985.
16. Mack C. A. Inside PROLITH: A Comprehensive Guide to Optical Lithography Simulation. Austin (TX, USA): FINLE Technologies, 1997, 179 p. URL: http://www.lithoguru.com/scientist/litho_papers/Inside_PROLITH.pdf
17. Zelentsov S. V., Zelentsova N. V. Sovremennaya fotolitografiya [Modern photolithography]. Nizhny Novgorod, 2006, 57 p. (In Russ.)
18. Karafyllidis I., Hagouel P. I., Thanailakis A., Neureuther A. An efficient photoresist development simulator based on cellular automata with experimental verification. IEEE Transactions on Semiconductor Manufacturing, 2000, vol. 13, no. 1, pp. 61—75. DOI: 10.1109/66.827346
19. Amirkhanov A. V., Gladkikh A. A., Glushko A. A., Mikhaltsov E. P., Rodionov I. A., Stolyarov A. A. Features of VLSI design methods taking into account the results of technological process modeling. Proceedings NIISI RAS, 2013, vol. 3, no. 1, pp. 10—19. (In Russ.)
20. Kharchenko E. L., Shamin E. S., Kuzovkov A. V., Ivanov V. V. Developing and using an express method of increasing the lithography process window. Nanoindustry, 2020, no. S96-2, pp. 730—732. (In Russ.). DOI: 10.22184/1993-8578.2020.13.3s.730.732
21. Calibre® WORKbenchTM. User’s and Reference Manual, Software Version 2013.2. Mentor Graphics Corporation, 2013. URL: https://www.mentor.com/products/ic-manufacturing/computational-lithography/calibre-workbench
22. Granik Y., Medvedev D., Cobb N. Toward standard process models for OPC. Proc. SPIE 6520, Optical Microlithography XX, 2007, vol. 6520, pp. 1447—1452. DOI: 10.1117/12.712229
23. Vengertsev D., Kim K., Yang S., Shim S., Moon S., Shamsuarov A., Lee S., Choi S.-W., Choi J. H., Kang H.-K. The new test pattern selection method for OPC model calibration, based on the process of clustering in a hybrid space. Proc. SPIE 8522. Photomask Technology 2012, 2012, vol. 8522, pp. 387—394. DOI: 10.1117/12.953827
Review
For citations:
Balan N.N., Ivanov V.V., Kuzovkov A.V., Sokolova E.V., Shamin E.S. Basic approaches to photoresist mask formation modeling in computational lithography. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(4):279-289. (In Russ.) https://doi.org/10.17073/1609-3577-2019-4-279-289