Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Calculation of the effective thermal conductivity of a superlattice based on the Boltzmann transport equation using first-principle calculations

https://doi.org/10.17073/1609-3577-2019-3-190-196

Abstract

In this work, we calculate the effective thermal conductivity coefficient for a binary semiconductor heterostructure using the GaAs/AlAs superlattice as an example. Different periods of layers and different ambient temperatures are considered. At the scale under consideration, the use of models based on the Fourier law is very limited, since they do not take into account the quantum-mechanical properties of materials, which gives a strong discrepancy with experimental data. On the other hand, the use of molecular dynamics methods allows us to obtain accurate solutions, but they are significantly more demanding on computing resources and also require solving a non-trivial problem of potential selection. When considering nanostructures, good results were shown by methods based on the solution of the Boltzmann transport equation for phonons; they allow one to obtain a fairly accurate solution, while having less computational complexity than molecular dynamics methods. To calculate the thermal conductivity coefficient, a modal suppression model is used that approximates the solution of the Boltzmann transport equation for phonons. The dispersion parameters and phonon scattering parameters are obtained from first-principle calculations. The work takes into account 2-phonon (associated with isotopic disorder and barriers) and 3-phonon scattering processes. To increase the accuracy of calculations, the non-digital profile of the distribution of materials among the layers of the superlattice is taken into account. The obtained results are compared with experimental data showing good agreement.

About the Authors

K. K. Abgaryan
Federal Research Centre “Information and Control” of the Russian Academy of Sciences, 44 Vavilov Str., Moscow 119333, Russia Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, 4, Moscow, 125993, Russia
Russian Federation
Karine K. Abgaryan: Dr. Sci. (Phys.-Math.), Chief Researcher, Head of the Department


I. S. Kolbin
Federal Research Centre “Information and Control” of the Russian Academy of Sciences, 44 Vavilov Str., Moscow 119333, Russia
Russian Federation
Ilya S. Kolbin: Cand. Sci. (Phys.-Math.), Researcher


References

1. Carrete J., Vermeersch B., Katre A., van Roekeghem A., Wang T., Madsen G. K. H., Mingo N. almaBTE : A solver of the space–time dependent Boltzmann transport equation for phonons in structured materials. Computer Physics Communications, 2017, vol. 220, pp. 351—362. DOI: 10.1016/j.cpc.2017.06.023

2. Khvesyuk V. I., Skryabin A. S. Heat conduction in nanostructures. High Temperature, 2017, vol. 55, no. 3, pp. 434—456. DOI: 10.1134/S0018151X17030129

3. van Roekeghem A., Vermeersch B., Carrete J., Mingo N. Thermal resistance of GaN/AlN graded interfaces. Phys. Rev. Appl., 2019, vol. 11, no. 3, p. 034036. DOI: 10.1103/PhysRevApplied.11.034036

4. McGaughey A. J. H., Kaviany M. Phonon transport in molecular dynamics simulations: formulation and thermal conductivity prediction. Advances in Heat Transfer., 2006, vol. 39, pp. 169—255. DOI: 10.1016/S0065-2717(06)39002-8

5. Zhang Xing-Li, Sun Zhao-Wei. Molecular dynamics simulation on thermal boundary resistance of superlattice structure. J. Aero. Mat., 2011, vol. 31, no. 4, pp. 7—10. DOI: 10.3969/j.issn.1005-5053.2011.4.002

6. Abgaryan K. K., Evtushenko Yu. G., Mutigullin I. V., Uvarov S. I. Molecular dynamic modeling of the initial stages of Si(111) surface nitridization in NH3 atmosphere. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2015, vol. 18, no. 4, pp. 267—272. (In Russ.). DOI: 10.17073/1609-3577-2015-4-267-272

7. Vallabhaneni A. K., Chen L., Gupta M. P., Kumar S. Solving nongray Boltzmann transport equation in gallium nitride. J. Heat Transfer., 2017, vol. 139, no. 10, p. 102701. DOI: 10.1115/1.4036616

8. Loy J. M., Murthy J. Y., Singh D. A fast hybrid Fourier-Boltzmann transport equation solver for nongray phonon transport. J. Heat Transfer., 2013, vol. 135, no. 1, p. 011008. DOI: 10.1115/1.4007654

9. Chung J. D., McGaughey A. J. H., Kaviany M. Role of phonon dispersion in lattice thermal conductivity modeling. J. Heat Transfer., 2004, vol. 126, no. 3, pp. 376—380. DOI: 10.1115/1.1723469

10. Barinov A. A., Zhang K., Lu B., Khvesyuk V. I. Development of in-plane thermal conductivity calculation methods in thin films. Science and Education of Bauman MSTU. 2017, no. 6, pp. 56—71. (In Russ.)

11. Vermeersch B., Carrete J., Mingo N. Cross-plane heat conduction in thin films with ab-initio phonon dispersions and scattering rates. Appl. Phys. Lett., 2016, vol. 108, no. 19, p. 193104. DOI: 10.1063/1.4948968

12. Broido D. A., Malorny M., Birner G., Mingo N., Stewart D. A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett., 2007, vol. 91, no. 23, p. 231922. DOI: 10.1063/1.2822891

13. Shindé S. L., Srivastava G. P. (Eds.). Length-Scale Dependent Phonon Interactions. New York: Springer, 2014, 296 p. DOI: 10.1007/978-1-4614-8651-0

14. Bellaiche L., Vanderbilt D. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B, 2000, vol. 61, no. 12, pp. 7877—7882. DOI: 10.1103/physrevb.61.7877

15. Li W., Lindsay L., Broido D. A., Stewart D. A., Mingo N. Thermal conductivity of bulk and nanowire Mg2SixSn1-x alloys from first principles. Phys. Rev. B, 2012, vol. 86, no. 17, p. 174307. DOI: 10.1103/physrevb.86.174307

16. Li W., Carrete J., Katcho N. A., Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, vol. 185, no. 6, pp. 1747—1758. DOI: 10.1016/j.cpc.2014.02.015

17. Kundu A., Mingo N., Broido D. A., Stewart D. A. Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B, 2011, vol. 84, no. 12, p. 125426. DOI: 10.1103/physrevb.84.125426

18. Ward A., Broido D. A., Stewart D. A., Deinzer G. Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B, 2009, vol. 80, no. 12, p. 125203. DOI: 10.1103/physrevb.80.125203

19. Carrete J., Vermeersch B., Thumfart L., Kakodkar R. R., Trevisi G., Frigeri P., Seravalli L., Feser J. P., Rastelli A., Mingo N. Predictive design and experimental realization of InAs/GaAs superlattices with tailored thermal conductivity. J. Phys. Chem. C, 2018, vol. 122, no. 7, pp. 4054—4062. DOI: 10.1021/acs.jpcc.7b11133

20. Wang Y., Shang S.-L., Fang H., Liu Z.-K., Chen L.-Q. First-principles calculations of lattice dynamics and thermal properties of polar solids. Npj Computational Materials, 2016, vol. 2, art. no. 16006. DOI: 10.1038/npjcompumats.2016.6

21. Wang Y., Wang J. J., Wang W. Y., Mei Z. G., Shang S. L., Chen L. Q., Liu Z. K. A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. J. Phys.: Condens. Matter., 2010, vol. 22, no. 20, p. 202201. DOI: 10.1088/0953-8984/22/20/202201

22. Spaldin N. A. A beginner’s guide to the modern theory of polarization. J. Solid State Chem., 2012, vol. 195, pp. 2—10. DOI: 10.1016/j.jssc.2012.05.010

23. Capinski W. S., Maris H. J., Ruf T., Cardona M., Ploog K., Katzer D. S. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B, 1999, vol. 59, no. 12, pp. 8105—8113. DOI: 10.1103/physrevb.59.8105

24. Benaim M. On functional approximation with normalized Gaussian units. Neural Computation, 1994, vol. 6, no. 2, pp. 319—333. DOI: 10.1162/neco.1994.6.2.319

25. Haykin S. S. Neural Networks: A Comprehensive Foundation. Prentice-Hal, 1999, 936 p.

26. Hardy R. L. Multiquadric equations of topography and other irregular surfaces. J. Geophysical Res., 1971, vol. 76, no. 8, pp. 1905—1915. DOI: 10.1029/JB076i008p01905

27. Vasilyev A. N., Kolbin I. S., Reviznikov D. L. Meshfree computational algorithms based on normalized radial basis functions. Advances in Neural Networks – ISNN 2016. 13th International Symposium on Neural Networks (St. Petersburg, Russia). Cham (Switzerland): Springer, 2016, pp. 583—591. DOI: 10.1007/978-3-319-40663-3_67

28. Bugmann G. Normalized Gaussian radial basis function networks. Neurocomputing, 1998, vol. 20, no. 1–3, pp. 97—110. DOI: 10.1016/S0925-2312(98)00027-7


Review

For citations:


Abgaryan K.K., Kolbin I.S. Calculation of the effective thermal conductivity of a superlattice based on the Boltzmann transport equation using first-principle calculations. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(3):190-196. (In Russ.) https://doi.org/10.17073/1609-3577-2019-3-190-196

Views: 798


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)