Calculation of the effective thermal conductivity of a superlattice based on the Boltzmann transport equation using first-principle calculations
https://doi.org/10.17073/1609-3577-2019-3-190-196
Abstract
About the Authors
K. K. AbgaryanRussian Federation
Karine K. Abgaryan: Dr. Sci. (Phys.-Math.), Chief Researcher, Head of the Department
I. S. Kolbin
Russian Federation
Ilya S. Kolbin: Cand. Sci. (Phys.-Math.), Researcher
References
1. Carrete J., Vermeersch B., Katre A., van Roekeghem A., Wang T., Madsen G. K. H., Mingo N. almaBTE : A solver of the space–time dependent Boltzmann transport equation for phonons in structured materials. Computer Physics Communications, 2017, vol. 220, pp. 351—362. DOI: 10.1016/j.cpc.2017.06.023
2. Khvesyuk V. I., Skryabin A. S. Heat conduction in nanostructures. High Temperature, 2017, vol. 55, no. 3, pp. 434—456. DOI: 10.1134/S0018151X17030129
3. van Roekeghem A., Vermeersch B., Carrete J., Mingo N. Thermal resistance of GaN/AlN graded interfaces. Phys. Rev. Appl., 2019, vol. 11, no. 3, p. 034036. DOI: 10.1103/PhysRevApplied.11.034036
4. McGaughey A. J. H., Kaviany M. Phonon transport in molecular dynamics simulations: formulation and thermal conductivity prediction. Advances in Heat Transfer., 2006, vol. 39, pp. 169—255. DOI: 10.1016/S0065-2717(06)39002-8
5. Zhang Xing-Li, Sun Zhao-Wei. Molecular dynamics simulation on thermal boundary resistance of superlattice structure. J. Aero. Mat., 2011, vol. 31, no. 4, pp. 7—10. DOI: 10.3969/j.issn.1005-5053.2011.4.002
6. Abgaryan K. K., Evtushenko Yu. G., Mutigullin I. V., Uvarov S. I. Molecular dynamic modeling of the initial stages of Si(111) surface nitridization in NH3 atmosphere. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2015, vol. 18, no. 4, pp. 267—272. (In Russ.). DOI: 10.17073/1609-3577-2015-4-267-272
7. Vallabhaneni A. K., Chen L., Gupta M. P., Kumar S. Solving nongray Boltzmann transport equation in gallium nitride. J. Heat Transfer., 2017, vol. 139, no. 10, p. 102701. DOI: 10.1115/1.4036616
8. Loy J. M., Murthy J. Y., Singh D. A fast hybrid Fourier-Boltzmann transport equation solver for nongray phonon transport. J. Heat Transfer., 2013, vol. 135, no. 1, p. 011008. DOI: 10.1115/1.4007654
9. Chung J. D., McGaughey A. J. H., Kaviany M. Role of phonon dispersion in lattice thermal conductivity modeling. J. Heat Transfer., 2004, vol. 126, no. 3, pp. 376—380. DOI: 10.1115/1.1723469
10. Barinov A. A., Zhang K., Lu B., Khvesyuk V. I. Development of in-plane thermal conductivity calculation methods in thin films. Science and Education of Bauman MSTU. 2017, no. 6, pp. 56—71. (In Russ.)
11. Vermeersch B., Carrete J., Mingo N. Cross-plane heat conduction in thin films with ab-initio phonon dispersions and scattering rates. Appl. Phys. Lett., 2016, vol. 108, no. 19, p. 193104. DOI: 10.1063/1.4948968
12. Broido D. A., Malorny M., Birner G., Mingo N., Stewart D. A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett., 2007, vol. 91, no. 23, p. 231922. DOI: 10.1063/1.2822891
13. Shindé S. L., Srivastava G. P. (Eds.). Length-Scale Dependent Phonon Interactions. New York: Springer, 2014, 296 p. DOI: 10.1007/978-1-4614-8651-0
14. Bellaiche L., Vanderbilt D. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B, 2000, vol. 61, no. 12, pp. 7877—7882. DOI: 10.1103/physrevb.61.7877
15. Li W., Lindsay L., Broido D. A., Stewart D. A., Mingo N. Thermal conductivity of bulk and nanowire Mg2SixSn1-x alloys from first principles. Phys. Rev. B, 2012, vol. 86, no. 17, p. 174307. DOI: 10.1103/physrevb.86.174307
16. Li W., Carrete J., Katcho N. A., Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, vol. 185, no. 6, pp. 1747—1758. DOI: 10.1016/j.cpc.2014.02.015
17. Kundu A., Mingo N., Broido D. A., Stewart D. A. Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B, 2011, vol. 84, no. 12, p. 125426. DOI: 10.1103/physrevb.84.125426
18. Ward A., Broido D. A., Stewart D. A., Deinzer G. Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B, 2009, vol. 80, no. 12, p. 125203. DOI: 10.1103/physrevb.80.125203
19. Carrete J., Vermeersch B., Thumfart L., Kakodkar R. R., Trevisi G., Frigeri P., Seravalli L., Feser J. P., Rastelli A., Mingo N. Predictive design and experimental realization of InAs/GaAs superlattices with tailored thermal conductivity. J. Phys. Chem. C, 2018, vol. 122, no. 7, pp. 4054—4062. DOI: 10.1021/acs.jpcc.7b11133
20. Wang Y., Shang S.-L., Fang H., Liu Z.-K., Chen L.-Q. First-principles calculations of lattice dynamics and thermal properties of polar solids. Npj Computational Materials, 2016, vol. 2, art. no. 16006. DOI: 10.1038/npjcompumats.2016.6
21. Wang Y., Wang J. J., Wang W. Y., Mei Z. G., Shang S. L., Chen L. Q., Liu Z. K. A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. J. Phys.: Condens. Matter., 2010, vol. 22, no. 20, p. 202201. DOI: 10.1088/0953-8984/22/20/202201
22. Spaldin N. A. A beginner’s guide to the modern theory of polarization. J. Solid State Chem., 2012, vol. 195, pp. 2—10. DOI: 10.1016/j.jssc.2012.05.010
23. Capinski W. S., Maris H. J., Ruf T., Cardona M., Ploog K., Katzer D. S. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B, 1999, vol. 59, no. 12, pp. 8105—8113. DOI: 10.1103/physrevb.59.8105
24. Benaim M. On functional approximation with normalized Gaussian units. Neural Computation, 1994, vol. 6, no. 2, pp. 319—333. DOI: 10.1162/neco.1994.6.2.319
25. Haykin S. S. Neural Networks: A Comprehensive Foundation. Prentice-Hal, 1999, 936 p.
26. Hardy R. L. Multiquadric equations of topography and other irregular surfaces. J. Geophysical Res., 1971, vol. 76, no. 8, pp. 1905—1915. DOI: 10.1029/JB076i008p01905
27. Vasilyev A. N., Kolbin I. S., Reviznikov D. L. Meshfree computational algorithms based on normalized radial basis functions. Advances in Neural Networks – ISNN 2016. 13th International Symposium on Neural Networks (St. Petersburg, Russia). Cham (Switzerland): Springer, 2016, pp. 583—591. DOI: 10.1007/978-3-319-40663-3_67
28. Bugmann G. Normalized Gaussian radial basis function networks. Neurocomputing, 1998, vol. 20, no. 1–3, pp. 97—110. DOI: 10.1016/S0925-2312(98)00027-7
Review
For citations:
Abgaryan K.K., Kolbin I.S. Calculation of the effective thermal conductivity of a superlattice based on the Boltzmann transport equation using first-principle calculations. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(3):190-196. (In Russ.) https://doi.org/10.17073/1609-3577-2019-3-190-196