Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Stresses modeling in multilayer semiconductor structures of automobile regulators and predicting the reliability of their operation

https://doi.org/10.17073/1609-3577-2020-2-134-141

Abstract

The problems of increasing the reliability of microelectromechanical systems are considered on the example of an automobile voltage regulator. A model of the process is proposed and a study of the effect of temperature on the formation of stress fields in semiconductor structures of active elements of the controller is carried out. The studies assumed of a possible reason for the change in the parameters of the regulator due to the appearance of defects in the crystal structure of the semiconductor material in the structures of integrated voltage regulators. For the study, a mathematical model was proposed that describes the behavior of a semiconductor element of a real car voltage regulator. It was found that the distribution of stresses in the structures is uneven and the maximum value of stresses reaches the edges., An increase in temperature gradients in the structures of regulators leads to the formation of dislocations that change the electrical characteristics of devices. As a result of modeling, it has been established that thermoelastic stresses arising in the process of manufacturing and functioning of semiconductor structures of a regulator in regulators of this type can cause a change in the structure of a semiconductor device due to relaxation of elastic stresses at dislocations. in cars. Measures are proposed, including thermostating of the sensitive elements of microelectromechanical structures, which will increase their service life.

About the Authors

S. A. Adarchin
Federal State Budgetary Educational Institution of Higher Education «Bauman Moscow State Technical University» (Kaluga Branch)
Russian Federation

2 Bazhenov Str., Kaluga 248035

Sergey A. Adarchin: Associate Professor



V. G. Kosushki
Federal State Budgetary Educational Institution of Higher Education «Bauman Moscow State Technical University» (Kaluga Branch)
Russian Federation

2 Bazhenov Str., Kaluga 248035

Victor G. Kosushkin: Professor



V. M. Gurin
Fokon LLC
Russian Federation

73 Grabtsevskoye shosse, Kaluga 24803

Vitaly M. Gurin: Engineer-Technologist



L. V. Kozhitov
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Lev V. Kozhitov: Dr. Sci. (Eng.), Professor



M. S. Vasyutin
Fokon LLC 
Russian Federation

73 Grabtsevskoye shosse, Kaluga 24803

Maxim S. Vasyutin: General Director



V. G. Bybenin
Moscow Polytechnic University
Russian Federation

38 Bolshaya Semyonovskaya Str., Moscow 107023

 Vyacheslav G. Bybenin: Professor



References

1. Bai H., Pekarek S., Tichenor J., Eversman W., Buening D., Holbrook G., Hull M., Krefta R., Shields S. Analytical derivation of a coupledcircuit model of a claw-pole alternator with concentrated stator windings. IEEE Trans. Energ. Convers., 2002, vol. 17, no. 1, pp. 32—38. DOI: 10.1109/60.986434

2. Zhang Y., Rajagopalan S., Salman M. A practical approach for beltslip detection in automotive electric power generation and storage system. Aerosp. Conf. Big Sky (MT, USA): IEEE, 2010. DOI: 10.1109/AERO.2010.5446832

3. Caliskan V. Modeling and simulation of a claw-pole alternator: Detailed and average models. Tech. Rep. 00-009. Cambridge: Massachusetts Institute of Technology, Laboratory for Electromagnetic and Electronic Systems, 2000.

4. Ruf F., Barthels A., Walla G., Winter M., Kohler T. P., Michel H.-U., Froeschl J., Herzog H.-G. Autonomous load shutdown mechanism as a voltage stabilization method in automotive power nets. Vehicle Power and Propulsion Conference. Seoul: IEEE, 2012, pp. 1261—1265. DOI: 10.1109/VPPC.2012.6422712

5. Scacchioli A., Rizzoni G., Pisu P. Model-based fault diagnosis design for an electrical automotive system. Proc. Int. Mech. Eng. Congr. Expo (ASME 2006). Chicago (IL, USA), 2006, pp. 315—324. DOI: 10.1115/IMECE2006-14504

6. Abgaryan K. K., Kharchenko V. A. standard model heterostructures for microwave devices. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2016, vol. 19, no. 1, pp. 43–49. (In Russ.). DOI: 10.17073/1609-3577-2016-1-43-49

7. Abgaryan K. K. Application of optimization methods for modelling of semiconductor film nanosystems. Trudy Instituta sistemnogo analiza Rossiiskoi akademii nauk. Dinamika neodnorodnykh system, 2010, vol. 53, no. 3, pp. 6—9.

8. Kharchenko V. A. Problems of reliability of electronic components. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2015, vol. 18, no. 1, pp. 52—57. (In Russ.). DOI: 10.17073/1609-3577-2015-1-52-57

9. Petukhov B. V. Effect of dynamic aging of dislocations on the deformation behavior of extrinsic semiconductors. Semiconductors, 2002, vol. 36, no. 2, pp. 121—125. DOI: 10.1134/1.1453422

10. Vlasov N. M., Zaznoba V. A. Influence of impurity atoms on the process of multiplication of edge dislocations. Zhurnal tekhnicheskoi fiziki = Journal of technical physics, 2001, vol. 71, no. 1, pp. 53—56. (In Russ.). URL: journals.ioffe.ru/articles/viewPDF/38691

11. Petukhov B. V. The statistical theory of dislocation motion in spontaneous locking-unlocking processes. Physics of the Solid State, 2001, vol. 43, no. 5, pp. 845—849. DOI: 10.1134/1.1371363

12. Glotova O. N., Adarchin S. A. Influence of quality thin dielectric films on the reliability of integrated circuits. Elektromagnitnye volny i elektronnye sistemy, 2016, vol. 21, no. 5, pp. 3—7. (In Russ.)

13. Adarchin S. A., Berezhansky B. R., Kosushkin V. G., Kozhitov L. V., Chervyakov L. M. Dislocations as one of the factors determining the parametric reliability of semiconductor sensors of physical quantities. Trudy XIII Mezhdunarodnoi konferentsii «Tekhnologii, oborudovanie i analiticheskie sistemy dlya materialovedeniya i nanomaterialov» = Proc. XIII International conference “Technologies, equipment and analytical systems for materials science and nanomaterials”. Kursk, 2016, pp. 106—114. (In Russ.)

14. Adarchin S. A., Berezhansky B. R., Kosushkin V. G., Kozhitov L. V., Chervyakov L. M. Effect of mechanical stresses on the electrophysical properties of microelectromechanical pressure sensors. Trudy XIII Mezhdunarodnoi konferentsii “Perspektivnye tekhnologii, oborudovanie i analiticheskie sistemy dlya materialovedeniya i nanomaterialov” = Proc. XIII International Conference “Advanced Technologies, equipment and analytical systems for materials science and nanomaterials ”. Kursk, 2016, pp. 127—132. (In Russ.)

15. Adarchin S. A., Berezhansky B. R., Kosushkin V. G. Features of degradation of sensitive elements of sensors. Sb. trudov XXXV Vserossiiskoi nauchno-tekhnicheskoi konferentsii «Problemy effektivnosti i bezopasnosti funktsionirovaniya slozhnykh tekhnicheskikh i informatsionnykh sistem» = Proceedings of the XXXV All-Russian Scientific and Technical Conference “Problems of the efficiency and safety of functioning of complex technical and information systems”. Pt 6. Serpukhov: Voennaya akad. RVSN im. Petra Velikogo, 2016, pp. 125—129. (In Russ.)

16. Adarchin S. A., Kosushkin V. G., Berezhansky B. R., Kulagina N. S., Emelyanov S. G., Kozhitov L. V. Formation of nanoscale defects in elastic elements of semiconductor pressure sensors. Sb. nauchn. statei 3-i Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Fizika i tekhnologiya nanomaterialov i struktur» = Sci. Art. 3rd International Scientific and Practical Conference “Physics and Technology of Nanomaterials and Structures”. Kursk: ZAO “Universitetskaya kniga”, 2017, pp. 170—174. (In Russ.)

17. Shilyaev P. A., Belonozhkin P. A., Aleshin A. E. Simulation of mechanical strains in Ge/Si heterostructures. Vestnik of Lobachevsky University of Nizhni Novgorod, 2014, no. 1–2, pp. 116—121. (In Russ.)

18. Kravchenko I. I. Mathematical model of flat surface machining inaccuracies due to elastic strains of technological system. Mashinostroenie i kompyuternye tekhnologii, 2018, no. 9, pp. 1—14. (In Russ.)

19. Shesterkin A. N. Sistema modelirovaniya i issledovaniya radioelektronnykh ustroistv Multisim 10 [System of modeling and research of radioelectronic devices Multisim 10. Moscow: DMK Press, 2012. 360 p. (In Russ.)

20. Gorokhov D. A. Modeling of the voltage regulator of automobile generator set. Scientific works of the Kuban State Technological University, 2017, no. 3, pp. 57—62. (In Russ.)


Review

For citations:


Adarchin S.A., Kosushki V.G., Gurin V.M., Kozhitov L.V., Vasyutin M.S., Bybenin V.G. Stresses modeling in multilayer semiconductor structures of automobile regulators and predicting the reliability of their operation. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020;23(2):134-141. (In Russ.) https://doi.org/10.17073/1609-3577-2020-2-134-141

Views: 812


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)