Modeling of energy structure p-i-n transition on the basis of GaN
https://doi.org/10.17073/1609-3577-2017-4-284-290
Abstract
The differential equation of the second order including function of distribution of density of a mobile charge in the compensated layer p-i-n of transition of the diode on the basis of GaN is received. The decision of the equation is executed by a numerical method with application of program MathCad. The electric field on border of the compensated layer (CL) and the compensated layer pays off from a condition, that concentration made diffusion in CL of electrons is much more than concentration of the motionless compensated ions of an impurity. Electrons from strongly alloyed layer made diffusion in CL, leaving in it positively charged ions donor impurity. Between layers mobile of electrons and ions the electric field E which a drift stream counterbalances diffusion a stream is created. The charged layers of mobile carriers of a charge shield an external electric field.
By results of the decision of the differential equation diagrams of distribution of an electric field and potential in the field of a spatial charge p-i-n transition on the basis of GaN in view of influence of free carriers of a charge are constructed. It is shown, that on a site volt ampere to dependence when it is broken it exponential dependence, in the compensated layer the drift field limiting growth of a direct current is created.
About the Authors
F. I. ManyakhinRussian Federation
4 Leninskiy Prospekt, Moscow 119049
Fedor I. Manyakhin: Dr. Sci. (Phys.-Math.), Professor
L. O. Mokretsova
Russian Federation
4 Leninskiy Prospekt, Moscow 119049
Lyudmila O. Mokretsova: Cand. Sci. (Eng.), Associate Professor
References
1. Meneghini M., Tazzoli A., Mura G., Meneghesso G., Zanoni E. High brightness GaN LEDs degradation during dc and pulsed stress. Proc. 17 Europ. Symp. Reliability of Electron Devices, Failure Physics and Analysis. Wuppertal (Germany), 2006, vol. 46, no. 9-11, pp. 1720—1724.
2. Rizgkov M. V. About degradation and refusals of white light-emitting diodes. Light Engineering, 2010, no. 4, pp. 25—28. (In Russ.)
3. Nikiforov S. The story about a "eternal" youth of light-emitting diodes. Semi-Conductor Light Engineering, 2010, no. 4, pp. 32—36. (In Russ.)
4. Shuichiro Yamamoto, Yuji Zhao, Chih-Chien Pan, Roy B. Chung, Kenji Fujito, Junichi Sonoda, DenBaars S. P., Shuji Nakamura. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (2021) GaN substrates. Appl. Phys. Express, 2010, vol. 3, no. 12, pp. 122102. DOI: 10.1143/APEX.3.122102
5. Ya-Ju Lee, Ching-Hua Chiu, Chih Chun Ke, Po Chun Lin, Tien-Chang Lu, Hao-Chung Kuo, Shing-Chung Wang. Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate, IEEE J. Selected Topics in Quantum Electronics, 2009, vol. 15, no. 4, pp. 1137—1143. DOI: 10.1109/JSTQE.2009.2014967
6. Bochkareva N. I., Gorbunov R. I., Zubrilov A. S., Lelikov Y. S., Rebane Y. T., Shreter Y. G., Voronenkov V. V., Tsyuk A. I., Latyshev F. E. Mechanism of the GaN LED efficiency falloff with increasing current. Semiconductors, 2010, vol. 44, no. 6, pp. 794—800. DOI: 10.1134/S1063782610060175
7. Kudryashov V. E., Mamakin S. S., Turkin A. N., Yunovich A. É., Kovalev A. N., Manyakhin F. I. Luminescence spectra and efficiency of GaN-based quantum-well heterostructure light emitting diodes: Current and voltage dependence. Semiconductors. 2001. vol. 35, no. 7, pp. 827—834. DOI: 10.1134/1.1385720
8. Mishori B., Muñoz M., Mourokh L., Pollak F. H., DeBray J. P., Ting S., Ferguson I. Surface photovoltage spectroscopy of InGaN/GaN/AlGaN multiple quantum well light emitting diodes. Mat. Res. Soc. Symp. Proc., 2001, vol. 680, pp. E4.2,1—E4.2,6.
9. Shukailo P. V., Obolensky S. V., Basargina N. V., Vorozhtsova I. V., Dubrovskikh S. M., Tkachev O. V. Analysis of GaN LED electroluminescence spectra after neutron irradiation. Radiophysics. The Bulletin of the Nizhniy Novgorod University after N.I. Lobachevsky, 2012, no. 6-1, pp. 51—55. (In Russ.)
10. Pinnington T., Koleske D. D., Zahler J. M., Ladous C., Park Y.-B., Crawford M. H., Banas M., Thaler G., Russell M. J., Olson S. M., Atwater H. A. InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalor-ganic chemical vapor deposition. J. Crystal Growth, 2008, vol. 310, no. 10, pp. 2514—2519. DOI: 10.1016/j.jcrysgro.2008.01.022
11. Guan-Bo Lin, Dong-Yeong Kim, Qifeng Shan, Jaehee Cho, E. Fred Schubert, Hyunwook Shim, Cheolsoo Sone, Jong Kyu Kim. Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes. IEEE Photonics Journal, 2013, vol. 5, no. 4. DOI: 10.1109/JPHOT.2013.2276758
12. McBride P. M., Yan Q., Van de Walle C. G. Effects of In profile on simulations of In-GaN/GaN multi-quantum-well light-emitting diodes. Appl. Phys. Lett., 2014, vol. 105, no. 8, p. 083507. DOI: 10.1063/1.4894464
13. Shah J. M., Li Y.-L., Gessmann Th., Schubert E. F. Experimental analysis and theoretical model for anomalously high ideality factors (n≫2.0) in AlGaN/GaN p-n junction diodes. J. Appl. Phys., 2003, vol. 94, no. 4, pp. 2627—2630. DOI: 10.1063/1.1593218
14. Adirovich E. I., Karageorgii-Alkalaev P. M., Leiderman A. Yu. Toki dvoinoi inzhektsii v poluprovodnikakh [Currents of double injection in semiconductors]. Moscow: Sovetskoe radio, 1978. 320 p. (In Russ.)
15. Zaytsev S. N., Ryzhikov I. V. The influence of deep recombination centers and trapping on the diffusion currents in the double injection of PIN-asymmetric structures, neutron-irradiated. Bulletin of the Moscow State University of Instrument Engineering and Informatics. Series: Instrument making and information technology, 2013, no. 44, pp. 115—126. (In Russ.)
16. Rabinovich O. I., Sushkov V. P. Quantum efficiency simulation of InGaN/Si LED. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2012, no. 3, pp. 50—53. (In Russ.). DOI: 10.17073/1609-3577-2012-3-50-53
17. Panchenko P. V., Malakhanov A. A., Rybalka S. B., Rad'kov A. V. Modeling of the current-voltage characteristics of a Schottky diode based on Ti/H4-SiC silicon carbide. Zhurnal radioelektroniki = Journal of Radioelectronics, 2016, no. 8, pp. 3.1—3.10. (In Russ.)
18. Manyakhin F. I. The role of the compensated layer in the formation of the volt-ampere characteristic of wide-band semiconductors light emitting diodes. Izvestiya Vysshikh Ucheb-nykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2009, no. 3, pp. 50—53. (In Russ.)
19. Manyakhin F. I., Kalinina E. V. Charge, electric field and potential distribution in SiC based high-voltage barrier structures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2003, no. 2, pp. 50—56. (In Russ.)
Review
For citations:
Manyakhin F.I., Mokretsova L.O. Modeling of energy structure p-i-n transition on the basis of GaN. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(4):284-290. https://doi.org/10.17073/1609-3577-2017-4-284-290