Dislocation structure of the AlGaN/GaN/α-Al2O3 heterostructures epitaxial layers at doping GaN with С and Fe
https://doi.org/10.17073/1609-3577-2017-4-272-283
Abstract
The aim of this work was to study the influence of the iron and carbon doping of the epitaxial GaN layer on sapphire on the growth features of epitaxial films and their dislocation structure. Investigation methods used were: mass spectroscopy of secondary ions, selective chemical etching on spherical sections, and also single-crystal diffractometry.It is shown that doping during growth of an epitaxial GaN layer with carbon can lead to a significant decrease in the dislocation density in epitaxial layers.It has been shown that for samples doped with iron, a decrease in the number of short dislocations located in the bulk of the structure is characteristic, but a large number of extended dislocations are generated contributing to the diffusion of iron into the working regions of heterostructures, which can adverselyinfluence on the electrical parameters of the structures. In the course of the work, a technique for determining the density of dislocations in epitaxial films was proposed using two schemes of selective etching of spherical thin sections, which makes it possible to determine the dislocation density distribution over the depth of epitaxial films.
About the Authors
T. F. RusakRussian Federation
27 Okruzhnoy proezd, Moscow 105187
K. L. Enisherlova
Russian Federation
27 Okruzhnoy proezd, Moscow 105187
A. V. Lutzau
Russian Federation
27 Okruzhnoy proezd, Moscow 105187
V. V. Saraykin
Russian Federation
27 Okruzhnoy proezd, Moscow 105187
V. I. Korneev
Russian Federation
27 Okruzhnoy proezd, Moscow 105187
References
1. Liliental-Weber Z., dos Reis R., Weyher J. L., Staszczak G., Jakieła R. The importance of structural in homogeneity in GaN thin films. J. Crystal Growth, 2016, vol. 456, pp. 160—167. DOI: 10.1016/j.jcrysgro.2016.08.059
2. Morkoç H. Handbook of nitride semiconductors and devices. Vol. 1. Materials properties, physics and growth. Weinhiem: Wiley-VCH Verlag GmbH& Co. KGaA, 2008, pp. 817—1191. DOI: 10.1002/9783527628438
3. Polyakov A. Y., Lee I.-H. Deep traps in GaN-based structures as affecting the performance of GaN devices. Materials Science and Engineering: R: Reports, 2015, vol. 94, pp. 1—56. DOI: 10.1016/j.mser.2015.05.001
4. Dong-Seok Kim, Chul-Ho Won, Hee-Sung Kang, Young-Jo Kim, Yong Tae Kim, In Man Kang, Jung-Hee Lee. Growth and characterization of semi-insulating carbon-doped/undoped GaN multiple-layer buffer. Semicond. Sci. Technol., 2015, vol. 30, no. 3, p. 035010 (6 p). DOI: 10.1088/0268-1242/30/3/035010
5. Li X., Bergsten J., Nilsson D., Danielsson Ö., Pedersen H., Rorsman N., Janzén E., Forsberg U. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results. Appl. Phys. Lett., 2016, vol. 107, no. 26, p. 26105 (15 p). DOI: 10.1063/1.4937575
6. Feng Z. H., Liu B., Yuan F. P., Yin J. Y., Liang D., Li X. B., Feng Z., Yang K. W., Cai S. J. Influence of Fe-doping on GaN grown on sapphire substrates by MOCVD. J. Cryst. Growth, 2007, vol. 309, no. 1, pp. 8—11. DOI: 10.1016/j.jcrysgro.2007.08.032
7. Manmohan Agrawal, Shreyash Pratap Singh, Nidhi Chaturvedi. Concept of buffer doping and backbarrier in GaN HEMT. Int. J. ChemTech Res., 2014–2015, vol. 7, no. 2, pp. 921—927. URL: http://sphinxsai.com/2015/ch_vol7_no2_ICONN/7/NE26%20(921-927).pdf
8. Cui Lei, Yin Haibo, Jiang Lijuan, Wang Quan, Feng Chun, Xiao Hongling, Wang Cuimei, Gong Jiamin, Zhang Bo, Li Baiquan, Wang Xiaoliang, Wang Zhanguo. The influence of Fe doping on the surface topography of GaN epitaxial material. Journal of Semiconductors, 2015, vol. 36, no. 10, p. 103002. DOI: 10.1088/1674-4926/36/10/103002
9. Lipski F. Semi-insulating GaN by Fe-doping in hydride vapor phase epitaxy using a solid iron source. Annual Report. Ulm University, Institute of Optoelrctronucs, 2010. Pp. 63—70. URL: https://pdfs.semanticscholar.org/befe/2434893df4f74d14ca62dc740f709a13190d.pdf.
10. Fariza A., Lesnik A., Neugebauer S., Wieneke M., Hennig J., Bläsing J., Witte H., Dadgar A., Strittmatter A. Leakage currents and Fermi-level shifts in GaN layers upon iron and carbon-doping. J. Appl. Phys., 2017, vol. 122, no. 2, pp. 025704-1—025704-6. DOI: 10.1063/1.4993180
11. Polyakov A. Y., Smirnov N. B., Dorofeev A. A., Gladysheva N. B., Kondratyev E. S., Shemerov I. V., Turutin A. V., Ren F., Pearton S. J. Deep traps in AlGaN/GaN high electron mobility transistors on SiC. ECS J. Solid State Sci. Technol., 2016, vol. 5, no. 10, pp. Q260—Q265. DOI: 10.1149/2.0191610jss
12. Simpkins B. S., Yu E. T., Waltereit P., Speck J. S. Correlated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride. J. Appl. Phys., 2003, vol. 94, no. 3, pp. 1448—1453. DOI: 10.1063/1.1586952
13. Enisherlova K. L., Rusak T. F., Korneev V. I., Zazulina A. N. Effect of SiC substrate properties on structural perfection and electrical parameters of AlGaN/G layers. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering., 2015, vol. 18, no. 3, pp. 221—228. (In Russ.). DOI: 10.17073/1609-3577-2015-3-221-228
14. Govorkov A. V., Polyakov A. Ya., Yugova T. G., Smirnov N. B., Petrova E. A., Mezhennyi M. V., Markov A. V., Lee I.-H., Pearton S. J. Identification of dislocations and their influence on the recombination of charge carriers in gallium nitride. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 2007, vol. 1, no. 4, pp. 380—385. DOI: 10.1134/S1027451007040039
15. Enisherlova K. L., Goryachev V. G., Saraykin V. V., Kapilin S. A. The instability of the CV characteristics’ capacitance when measuring AlGaN/GaN-heterostructures and the HEMT-transistors based on them. Russian Microelectronics, 2017, vol. 46, no. 8, pp. 591—599. DOI: 10.1134/S1063739717080066
16. Enisherlova K. L., Lutzau A.V., Temper E.M. Odnokristal'naya rentgenovskaya difraktometriya geterostruktur [Single-crystal X-ray diffractometry of heterostructures]. Moscow: J&C “S&PE “Pulsar”, 2016. P. 144. (In Russ.)
17. Lei Zhang, Yongliang Shao, Yongzhong Wu, Xiaopeng Hao, Xiufang Chen, Shuang Qu, Xiangang Xu. Characterization of dislocation etch pits in HVPE-grown GaN using different wet chemical etching methods. J. Alloys and Compounds, 2010, vol. 504, no. 1, pp. 186—191. DOI: 10.1016/j.jallcom.2010.05.085
18. Zhang H., Miller E. J., Yu E. T. Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N∕GaN grown by molecular-beam epitaxy. J. Appl. Phys., 2006, vol. 99, no. 2, p. 023703. DOI: 10.1063/1.2159547
19. Choi Y. C., Pophristic M., Peres B., Spencer M. G., Eastman L. F. Fabrication and characterization of high breakdown voltage AlGaN∕GaN heterojunction field effect transistors on sapphire substrates. J. Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2006, vol. 24, no. 6, pp. 2601—2605. DOI: 10.1116/1.2366542
Review
For citations:
Rusak T.F., Enisherlova K.L., Lutzau A.V., Saraykin V.V., Korneev V.I. Dislocation structure of the AlGaN/GaN/α-Al2O3 heterostructures epitaxial layers at doping GaN with С and Fe. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(4):272-283. https://doi.org/10.17073/1609-3577-2017-4-272-283