Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Monolike ingot growth by directional solidification of Solar Grade silicon

https://doi.org/10.17073/1609-3577-2017-3-194-205

Abstract

In the frame of permanent objective to increase solar cell efficiency and to decrease production cost the monolike ingot process was designed which combine multicrystalline (mc) productivity and monocrystalline structure performances. As a raw material the mc-Solar Grade silicon (SoG-Si) was used because it is less expensive than the Si purified by gas chemical route (Siemens process or equivalent), Usage of the mc-SoG-Si for growing silicon ingots by monolike process should contribute to the ingot and wafer manufacturing cost decrease. SoG silicon using would be developed all the more fast since it enables to produce high efficiency solar cells. It is why the monolike process have been tested and optimized for Kazakhstan mc-SoG silicon. The objective of this work was study of the higher level content impurities influences on the crystal defect generation (mainly dislocations) of the monocrystalline structure. Visual monocrystalline structure, minority carrier lifetime mapping, and photoluminescence techniques were used to study the monolike ingots obtained from Kazakhstan’s mc-SoG silicon.

About the Authors

A. A. Betekbaev
“МК “KazSilicon” LLP
Kazakhstan

1 Komarova Str., Bastobe 041011

Azat A. Betekbaev: Chairman of the Supervisory Board



B. N. Mukashev
“МК “KazSilicon” LLP
Kazakhstan

1 Komarova Str., Bastobe 041011

Bulat N. Mukashev: Academician of NAS RK, Dr. Sci., Professor



L. Pelissier
ECM Greentech
France

109 Rue Hilaire de Chardonnet, Grenoble 38100

Laurent Pelissier: CEO



P. Lay
ECM Greentech
France

109 Rue Hilaire de Chardonnet, Grenoble 38100

Philippe Lay: PhD, Technical Director



G. Fortin
ECM Greentech
France

109 Rue Hilaire de Chardonnet, Grenoble 38100

Gautier Fortin: R&D Engineer



L. Bounaa
ECM Greentech
France

109 Rue Hilaire de Chardonnet, Grenoble 38100

Lotfi Bounaas: PhD, R&D Engineer



D. M. Skakov
“МК “KazSilicon” LLP
Kazakhstan

1 Komarova Str., Bastobe 041011

Danel M. Skakov: General Manager



D. A. Kalygulov
“МК “KazSilicon” LLP
Kazakhstan

1 Komarova Str., Bastobe 041011

Dastan A. Kalygulov



A. A. Pavlov
“МК “KazSilicon” LLP
Kazakhstan

1 Komarova Str., Bastobe 041011

Artem A. Pavlov: Engineer of PTD



T. S. Turmagambetov
“МК “KazSilicon” LLP
Kazakhstan

1 Komarova Str., Bastobe 041011

Tleuzhan S. Turmagambetov



V. V. Lee
“Kazakhstan Solar Silicon” LLP
Kazakhstan

223/6 Sogrinskaya Str., Ust-Kamenogorsk 070017

Vladimir V. Lee: General Director



References

1. Luque A., Hegedus S. S. Handbook of photovoltaic science and engineering. Chichester (UK): John Wiley and Sons Ltd., 2011. 1162 p. DOI: 10.1002/9780470974704

2. Kirscht F., Heuer M., Käs M., Rakotoniaina J.-P., Jester T. Metallurgically refined silicon for photovoltaics. Proceedings 6th International Workshop on Crystalline Silicon for Solar Cells (CSSC-6). Aix-les-Bains (France): Institut National de L’Energie Solaire, 2012.

3. Betekbaev A. A., Mukashev B. N., Pelissier L., Lay P., Fortin G., Bounaas L., Skakov D. M., Pavlov A. A. Doping optimization of solar grade (SOG) silicon ingots for increasing ingot yield and cell efficiency. Modern Electronic Materials, 2016, vol. 2, no. 3, pp. 61—65. DOI: 10.1016/j.moem.2016.10.002

4. Mukashev B., Betekbaev A., Skakov D., Pellegrin I, Pavlov А., Bektemirov Zh. Upgrading of metallurgical grade silicon to solar grade silicon. Eurasian Chemico-Technological J., 2014, vol. 16, no. 4, pp. 309—313. DOI: 10.18321/ectj11

5. Mukashev B. N., Betekbaev A. A., Kalygulov D. A., Pavlov A. A., Skakov D. M. Study of silicon production processes and development of solar-cell fabrication technologies. Semiconductors. 2015, vol. 49, no. 10, pp. 1375—1382. DOI: 10.1134/S1063782615100164

6. Coletti G., Bronsveld P. C. P., Hahn G., Warta W., Macdonald D., Ceccaroli B., Wambach K., Quang N. L., Fernandez J. M. Impact of metal contaminations in silicon solar cells. Adv. Funct. Mater. 2011, vol. 21, no. 5. pp. 879—890. DOI: 10.1002/adfm.201000849

7. Betekbaev A. A., Mukashev B. N., Ounadjela К., Pavlov A. A., Pellegrin I., Shcolnik V. S. КazPV project: Industrial development of vertically integrated PV production in Kazakhstan (from quartz processing up to production of solar cells and modules). 24th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes. Breckenridge (Colorado, USA), 2014, pp. 101—107.

8. Schmidt J., Bothe K. Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon. Phys. Rev. B. 2004, vol. 69, no. 2, pp. 24107—24115. DOI: 10.1103/PhysRevB.69.024107

9. Arora N. D., Hauser J. R., Roulston D. J. Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Transactions on Electron Devices. 1982, vol. 29, no. 2, pp. 292—295. DOI: 10.1109/T-ED.1982.20698

10. Duffar T., Nadri A. On the twinning occurrence in bulk semiconductor crystal growth. Scripta Materialia. 2010, vol. 62, no. 12, pp. 955—960, DOI: 10.1016/j.scriptamat.2010.02.034

11. Bolling G. F., Tiller W. A. Growth from the Melt. III. Dendritic Growth. J. Appl. Phys. 1961, vol. 32, no. 12, pp. 2587—2605. DOI: 10.1063/1.1728359

12. Müller G. Crystal growth from the melt. Ser. Crystals, vol. 12. Berlin; Heidelberg: Springer-Verlag, 1988. 138 p. DOI: 10.1007/978-3-642-73208-9

13. Jackson K. A. Actual concepts of interface kinetics. In Crystal Growth - From Fundamentals to Technology. Amsterdam: Elsevier Science B.V., 2004, pp. 27—53. DOI: 10.1016/B978-044451386-1/50004-0

14. Trempa M., Reimann C., Friedrich J., Müller G., Oriwol D. Mono-crystalline growth in directional solidification of silicon with different orientation and splitting of seed crystals. J. Crystal Growth. 2012, vol. 351, no. 1, pp. 131—140. DOI: 10.1016/j.jcrysgro.2012.04.035

15. Gong L., Wang F., Cai Q., You D., Dai B. Characterization of defects in mono-like silicon wafers and their effects on solar cell efficiency. Solar Energy Materials and Solar Cells. 2014, vol. 120, pt. A, pp. 289—294. DOI: 10.1016/j.solmat.2013.09.020

16. Amaral de Oliveira V., Tsoutsouva M., Lafford T., Pihan E., Barou F., Cayron C., Camel D. Sub-grain boundaries sources and effects in large mono-like silicon ingots for PV. 29th European Photovoltaic Solar Energy Conference and Exhibition. Amsterdam (Netherlands), 2014, pp. 793—797. DOI: 10.4229/EUPVSEC20142014-2AV.1.52

17. Ervik T., Stokkan G., Buonassisi T., Mjøs Ø., Lohne O. Dislocation formation in seeds for quasi-monocrystalline silicon for solar cells. Acta Mater. 2014, vol. 67, pp. 199—206. DOI: 10.1016/j.actamat.2013.12.010

18. Gallien B. Contraintes thermomécaniques et dislocations dans les lingots de silicium pour applications photovoltaïque. PhD Thesis. Grenoble (France): Université de Grenoble, 2014. (In Fr.)

19. Betekbaev A. A., Mukashev B. N., Skakov D. M., Kalygulov D. A., Turmagambetov T. S., Pelissier L., Lay P., Fortin G., Bounaas L., Lee V. V. Comparison of the characteristics of solar cells fabricated from multicrystalline silicon with those fabricated from silicon obtained by the monolike technology. Semiconductors. 2016, vol. 50, no. 8, pp. 1085—1091. DOI: 10.1134/S1063782616080091


Review

For citations:


Betekbaev A.A., Mukashev B.N., Pelissier L., Lay P., Fortin G., Bounaa L., Skakov D.M., Kalygulov D.A., Pavlov A.A., Turmagambetov T.S., Lee V.V. Monolike ingot growth by directional solidification of Solar Grade silicon. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017;20(3):194-205. (In Russ.) https://doi.org/10.17073/1609-3577-2017-3-194-205

Views: 899


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)