Charge-coupling effect in a Hall field element based on thin-film SOI-MOS transistor
https://doi.org/10.17073/1609-3577-2021-1-57-62
Abstract
The influence of the coupling effect on the parameters of field Hall elements based on thin-film MOS transistors has been studied. Analysis of the development of today’s microelectronics shows the necessity of developing the element base for high performance sensors based on silicon technologies. One way to significantly improve the performance of sensing elements including magnetic field sensors is the use of thin-film transistors on the basis of silicon on insulator (SOI) structures. It has been shown that field Hall sensors (FHS) may become the basis of high-performance magnetic field sensors employing the coupling effect occurring in the double gate vertical topology of these sensing elements. Electrophysical studies of FHS have been conducted for different gate bias and power supply modes. The results show that the coupling effect between the gates occurs in FHS if the thickness of the working layer between the gates is 200 nm. This effect leads to an increase in the effective carrier mobility and hence an increase in the magnetic sensitivity of the material. Thus field Hall elements based on thin-film transistors fabricated using silicon technologies provide for a substantial increase in the magnetic sensitivity of the elements and allow their application in highly reliable magnetic field sensors.
About the Authors
A. V. LeonovRussian Federation
6 Academician Ossipyan Str., Chernogolovka, Moscow Region, 142432
Aleksey V. Leonov: Cand. Sci. (Phys.-Math.), Researcher
V. N. Murashev
Russian Federation
4 Leninsky Prospekt, Moscow 119049
Victor N. Murashev: Dr. Sci. (Eng.), Professor
D. N. Ivanov
Russian Federation
4 Leninsky Prospekt, Moscow 119049
Dmitry N. Ivanov: Postgraduate Student
V. D. Kirilov
Russian Federation
4 Leninsky Prospekt, Moscow 119049
V. D. Kirilov
References
1. Huijsing J. H. Smart Sensor System: Why? Where? Now? In: Smart Sensor System. Ed by G. C. M. Meijer. John Wiley & Sons, Ltd, 2008, pp. 1—21. DOI: 10.1002/9780470866931.ch1
2. Magnetic field sensor market will be worth $2.9 billion by 2020. URL: https://intelligencecommunitynews.com/magnetic-field-sensor-market-will-be-worth-2-9-billion-by-2020-says-report/
3. Magnetic Sensors Market Analysis By Technology. 2016. URL: http://www.grandviewresearch.com/industry-analysis/magnetic-sensors- market
4. Baranochnikov M. L. Mikromagnitoelektronika [Micromagnetoelectronics]. Vol. 1. Moscow: DMK Press, 2016, 544 p. (In Russ.)
5. Voitovich I. D., Korsunskii V. M. Intellektual’nye sensory [Intellectual sensors]. M.: Izd-vo Intuit, Binom. Laboratoriya znanii, 2009. 626 p. (In Russ.)
6. Mordkovich V. N. Structures “silicon-on-insulator” a promising material for microelectronics. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 1998, no. 2, pp. 4—7. (In Russ.)
7. Colinge J.-P. Silicon-on-Insulator Technology: Materials to VLSI. Boston: Springer, 2004, 366 p. (pp. 157—159). DOI: 10.1007/978-1-4419-9106-5
8. Naumova O. V., Fomin B. I., Safronov L. N., Nasimov D. A., Ilnitskii M. A., Dudchenko N. V., Devyatova S. F., Zhanaev E. D., Popov V. P., Latyshev A. V., Aseev A. L. Silicon nanowire transistors for electron biosensors. Optoelectron. Instrument. Proc., 2009, vol. 54, no. 4, pp. 287—291. DOI: 10.3103/S8756699009040013
9. Naumova O. V., Fomin B. I., Nasimov D. A., Dudchenko N. V., Devyatova S. F., Zhanaev E. D., Popov V. P., Latyshev A. V., Aseev A. L., Ivanov Yu. D., Archakov A. I. SOI nanowires as sensors for charge detection. Semocond. Sci. Technol., 2010, vol. 25, no. 5, p. 055004. DOI: 10.1088/0268-1242/25/5/055004
10. Elfström N., Juhasz R., Sychugov I., Engfeldt T., Karlström A. E., Linnros J. Surface charge sensitivity of silicon nanowires: size dependence. Nano Lett., 2007, vol. 7, no. 9, pp. 2608—2612. DOI: 10.1021/nl0709017
11. Lim H. K., Fossum J. G. Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET’s. IEEE Transactions on Electron Devices, 1983, vol. 30, no. 10, pp. 1244—1251. DOI: 10.1109/T-ED.1983.21282
12. Celler G. K. Frontiers of silicon-on-insulator. J. Appl. Phys., 2003, vol. 93, no. 9, p. 4955. DOI: 10.1063/1.1558223
13. Rudenko T., Nazarov A., Kilchytska V., Flandre D., Popov V., Ilnitsky M., Lysenko V. Revision of interface coupling in ultra-thin body silicon-on-insulator MOSFETs. Semicond. Physics, Quant. Electron & Optoelectron., 2013, vol. 16, no. 3, pp. 300—309. URL: http://nbuv.gov.ua/UJRN/MSMW_2013_16_3_15
14. Popov V. P., Ilnitsky M. A., Naumova O. V., Nazarov A. N. Quantum corrections to threshold voltages for fully depleted SOI transistors with two independent gates. Semiconductors, 2014, vol. 48, no. 10, pp. 1312—1317. DOI: 10.1134/S1063782614100248
15. Mordkovich V. N., Baranochnikov M. L., Leonov A. V., Mokrushin A. D., Omelianovskaya N. M., Pazhin D. M. Field Hall device — a new type of magnetic field transducer. Datchiki i sistemy = Sensors and Systems, 2003, no. 7, pp. 33—38. (In Russ.)
16. Mokrushin A. D., Omelyanovskaya N. M., Leonov A. V., Mordkovich V. N., Pazhin D. M. Radiation effects in SOI magnetosensitive elements under different irradiation conditions. In: Scientific and technical collection. Radiation resistance of electronic systems “Resistance-2000”. Moscow: SPELS, 2000, vol. 3, pp. 38—42. (In Russ.)
17. Leonov A. V., Malykh A. A., Mordkovich V. N., Pavlyuk M. I. Multichannel and multifunctional frequency-output sensors of physical effects based on a universal field transistor-type sensing element with a silicon-on-insulator structure. Instrum. Exp. Tech., 2018, vol. 61, no. 2, pp. 299—305. DOI: 10.1134/S002044121801027X
18. Naumova O. V., Zaitseva E. G., Fomin B. I., Ilnitsky M. A., Popov V. P. Density dependence of electron mobility in the accumulation mode for fully depleted SOI films. Semiconductors, 2015, vol. 49, no. 10, pp. 1316—1322. DOI: 10.1134/S106378261510017
19. Popovich R. S. Hall Effect Devices. Bristol (Philadelphia): IOP Publishing Ltd, 2004. 419 p.
20. Sze S. M. Physics of Semiconductor Devices. Wiley-Interscience, 1981, 880 p.
Review
For citations:
Leonov A.V., Murashev V.N., Ivanov D.N., Kirilov V.D. Charge-coupling effect in a Hall field element based on thin-film SOI-MOS transistor. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(1):57-62. (In Russ.) https://doi.org/10.17073/1609-3577-2021-1-57-62