Study of ferroelectric nanocomposites based on P(VDF-TrFE) by scanning probe microscopy
https://doi.org/10.17073/1609-3577-2021-2-71-78
Abstract
Ceramic and polymer based nanocomponents combine the properties of their constituents, e.g. flexibility, elasticity, polymer reprocessability, hardness typical of glass, wear resistance and high light refraction index. This helps improving many properties of the materials in comparison with the source components. Since recently researchers have been manifesting interest to the properties of complex composite compounds. This is primarily caused by the unique properties of their structures as compared with conventional materials having homogeneous composition. Secondly, this interest is caused by the fact that these compounds may prove to be much cheaper than homogeneous structures provided the physical properties of the composite in a preset range of parameters (temperature, applied field frequency etc.) are identical to those of the respective homogeneous materials. For example, polyvinyl idenfluoride (PVDF) type ferroelectric polymers and copolymers on its basis have found wide application for functional elements of various electromechanic devices in advanced electronics due to their relatively good piezoelectric and pyroelectric properties. The strong random polarization and the formation of polar non-centrosymmetric crystals provide for the high piezoelectric and pyroelectric activity in these crystals. Scanning probe microscopy has been used for study of ferroelectric nanocomposites having different compositions. The matrix specimen for study of local polarization switching at a nanoscale level was vinyl idenfluoride and trifluoroethylene P(VDF-TrFE) copolymer possessing sufficiently high crystallinity. The composite fillers were barium titanate BaTiO3 and deuterized triglycinsulfate DTGS ferroelectric powders and zirconate-titanate lead barium BPZT ceramic powder. We show these materials to show good promise for use in memory cells.
About the Authors
Yu. S. TerekhovaRussian Federation
4 Leninsky Prospekt, Moscow 119049
Yuliia S. Terekhova: Graduate Student, Engineer
D. A. Kiselev
Russian Federation
4 Leninsky Prospekt, Moscow 119049
Dmitry A. Kiselev — Cand. Sci. (Phys.-Math.), PhD, Head of the Laboratory of Physics of Oxide Ferroelectrics
A. V. Solnyshkin
Russian Federation
33 Zhelyabova Str., Tver 170100
Alexander V. Solnyshkin — Dr. Sci. (Phys.-Math.), Professor
,
References
1. Sutl N. New piezoelectric polymers. Materialy i dizain. 1998; 9(6): 318—324. (In Russ.)
2. Tamura M. Properties and applications of piezoelectric polymers. Materials of the ultrasonic symposium. 1987: 344—346. (In Russ.)
3. Chvalun S.N. Polymeric nanocomposites. Priroda. 2000; (7): 22—30. (In Russ.)
4. Zhivulin V.E., Pesin L.A., Zherebtsov D.A., Lebedeva S.M., Shtenberg M.V., Osipov A.A. Synthesis and properties of polyvinylidene fluoride high-temperature treatment products. Physics of the Solid State. 2017; 59(2): 408—412. https://doi.org/10.1134/S1063783417020366
5. Solnyshkin A.V., Morsakov I.M., Kanareikin A.G., Bogomolov A.A. Pyroelectric effect in composites based on copolymer P(VDF-TrFE) and ferroelectric ceramics BPZT. Bulletin of the Russian Academy of Sciences: Physics. 2010; 74(9): 1287—1290. https://doi.org/10.3103/S1062873810090303
6. Solnyshkin A.V., Kislova I.L., Belov A.N., Sysa A.V., Stroganov A.A., Shevjakov V.I., Silibin M.V., Mihalchan A.A., Lysenko A.A. Electrical conductivity of the composite films based on polyvinylidene fluoride and carbon nanotubes. Proceedings of Universities. Electronics. 2016; 21(6): 520—528. (In Russ.)
7. Noda K., Ishida K., Kubono A., Horiuchi T., Yamada H., Matsushige K. Structures and ferroelectric natures of epitaxially grown vinylidene fluoride oligomer thin films. Japanese Journal of Applied Physics. 2000; 39-1(11): 6358—6363.
8. Veprek S., Argon A.S. Towards the understanding of mechanical properties of super- and ultrahard nanocomposites. J. Vac. Sci. and Technol. 2002; 20(2): 650—664. https://doi.org/10.1116/1.1459722
9. Kuntz J.D., Zhan G.-D., Mukherjee A.K. Nanocrystalline-matrix ceramic composites for improved fracture toughness. MRS Bulletin. 2004; (1): 22—27. https://doi.org/10.1557/mrs2004.12
10. Solnyshkin A.V., Bogomolov A.A., Kiselev D.A., Kholkin A.L., Künstler W., Gerhard R. Atomic force microscopy study of ferroelectric films of P(VDF-TrFE) copolymer and composites based on it. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2008; 2(5): 692—695.https://doi.org/10.1134/S1027451008050042
11. Solnyshkin A.V., Morsakov I.M., Bogomolov A.A., Belov A.N., Vorobiev M.I., Shevyakov V.I., Silibin M.V., Shvartsman V.V. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate. Appl. Phys. A. 2015; 121: 311—316. https://doi.org/10.1007/s00339-015-9446-z
12. Zhivulin V.E., Pesin L.A., Zherebtsov D.A., Lebedeva S.M., Shtenberg M.V., Osipov A.A. Synthesis and properties of polyvinylidene fluoride high-temperature treatment products. Physics of the Solid State. 2017; 59(2): 408—412. https://doi.org/10.1134/S1063783417020366
13. Danilov A.Yu. Obtaining polymer composites with high ferroelectric and thermal properties: Dis. ... Cand. Sci. (Chem.). Tver; 2015. 117 p. (In Russ.)
14. Mironov V.L. Osnovy skaniruyushchei zondovoi mikroskopii [Fundamentals of scanning probe microscopy]. Nizhny Novgorod: IPM RAS; 2004. 114 p.
15. Kochervinskii V.V., Pavlov A.S., Kiselev D.A., Malinkovich M.D., Korlyukov A.A., Lokshin B.V., Volkov V.V., Kirakosyan G.A. Surface topography and crystal and domain structures of films of ferroelectric copolymer of vinylidene difluoride and trifluoroethylene. Crystallography Reports. 2017; 62(2): 324—335. https://doi.org/10.1134/S1063774517020146
16. Kochervinskii V.V., Pavlov A.S., Kozlova N.V., Shmakova N.A., Kiselev D.A., Malinkovich M.D. Effect of the structure of a ferroelectric vinylidene fluoride- tetrafluoroethylene copolymer on the characteristics of a local piezoelectric response. Polymer Science. Series A. 2014; 56(1): 48—62. https://doi.org/10.1134/S0965545X14010064
17. Silibin M.V., Solnyshkin A.V., Kiselev D.A., Morozovska A.N., Eliseev E.A., Gavrilov S.A., Malinkovich M.D., Lupascu D.C., Shvartsman V.V. Local ferroelectric properties in polyvinylidene fluoride/barium lead zirconate titanate nanocomposites: Interface effect. J. Appl. Phys. 2013; 114(14): 144102. https://doi.org/10.1063/1.4824463
Review
For citations:
Terekhova Yu.S., Kiselev D.A., Solnyshkin A.V. Study of ferroelectric nanocomposites based on P(VDF-TrFE) by scanning probe microscopy. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(2):71-78. (In Russ.) https://doi.org/10.17073/1609-3577-2021-2-71-78