Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Comparison between optical and electrophysical data on free electron concentration in n-InAs samples

https://doi.org/10.17073/1609-3577-2021-3-153-161

Abstract

A theoretical model has been developed for determining free electron concentration in n-InAs from characteristic points in far infrared region of reflection spectra. We show that when determining free electron concentration one should take into account the plasmon-phonon coupling, otherwise free electron concentration will be overestimated. We have calculated electron concentration, Nopt, as a function of characteristic wave number, ν+, which is described by a third order polynomial. 
Twenty one n-InAs samples (5-doped with tin and 16-doped with sulfur) have been tested at room temperature for electron concentration using two methods, i.e., the conventional four-probe (Van der Pau) method (NHall) and the optical method developed by us (Nopt). The reflective surfaces of investigated samples were processed either with chemical-mechanical polishing or treating with short-grained abrasive powder.  
It was shown that for all the investigated samples the condition Nopt > NHall was relevant. The difference between optical and electrophysical electron concentration values has been shown to be greater in case of chemically polished reflective surface of the sample and smaller in case of abrasive-treated one. 
The experimental results have been compared with the same data previously obtained for n-GaAs samples. Qualitative model has been suggested to explain obtained experimental data. 

About the Authors

T. G. Yugova
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Tatyana G. Yugova — Cand.Sci. (Eng.), Senior Researcher



A. G. Belov
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Aleksandr G. Belov — Cand. Sci. (Phys.–Math.), Leading Researcher

 



V. E. Kanevskii
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Vladimir E. Kanevskii — Cand. Sci. (Eng.), Senior Researcher

 



E. I. Kladova
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Evgeniya I. Kladova — Researcher

 



S. N. Knyazev
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Stanislav N. Knyazev — Cand. Sci. (Eng.), Head of Laboratory

 



I. B. Parfent'eva
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2 Elektrodnaya Str., Moscow 111524

Irina B. Parfent'eva — Leading Engineer-Technologist



References

1. Yugova T.G., Belov A.G., Kanevskii V.E., Kladova E.I., Knyazev S.N. Comparison between optical and electrophysical data on free electron concentration in tellurim doped n-GaAs. Modern Electronic Materials, 2020; 6(3): 85—89. https://doi.org/10.3897/j.moem.6.3.64492

2. Galkin G.N., Blinov L.M., Vavilov V.S., Solomatin A.G. Plasma resonance on nonequilibrium carriers in semiconductors. Pis’ma v zhurnal tekhnicheskoi fiziki, 1968; 7(3): 93—96. (In Russ.)

3. Belogorokhov A.I., Belov A.G., Petrovitch P.L., Rashevskaya E.P. Determination of the concentration of free charge carriers in Pb1-xSnxTe taking into account the damping of plasma oscillations. Optika i spectroskopiya, 1987; 63(6): 1293—1296. (In Russ.)

4. Belogorokhov A.I., Belogorokhova L.I., Belov A.G., Rashevskaya E.P. Plasma resonance of free charge carriers and estimation of some parameters of the band structure of the material CdxHg1–xTe. Fizika i tekhnika poluprovodnikov, 1991; 25(7): 1196–1203. (In Russ.). https://journals.ioffe.ru/articles/viewPDF/23491

5. Sharov M.K. Plasma resonance in Pb1-xAgxTe alloys. Semiconductors, 2014; 48(3): 299—301. https://doi.org/10.1134/S1063782614030245

6. Rokakh A.G., Shishkin M.I., Skaptsov A.A., Puzynya V.A. On the possibility of the plasma resonance in CdS–PbS films in the middle infrared region. Prikladnaya Fizika. 2014; (5): 58—60. (In Russ.)

7. Varga B.B. Coupling of plasmons to polar phonons in degenerate semiconductors. Phys. Rev., 1965; 137(6A): 1896—1901. https://doi.org/10.1103/PhysRev.137.A1896

8. Singwi K.S., Tosi M.P. Interaction of plasmons and optical phonons in degenerate semiconductors. Phys. Rev., 1966; 147(2): 658—662. https://doi.org/10.1103/PhysRev.147.658

9. Shkerdin G., Rabbaa S., Stiens J., Vounckx R. Influence of electron scattering on phonon-plasmon coupled modes dispersion and free electron absorption in n-doped GaN semiconductors at mid-IR wavelengths. Phys. Status Solidi (b), 2014; 251(4): 882—891. https://doi.org/10.1002/pssb.201350039

10. Ishioka K., Brixius K., Höfer U., Rustagi A., Thatcher E.M., Stanton C.J., Petek Hr. Dynamically coupled plasmon-phonon modes in GaP: an indirect-gap polar semiconductor. Phys. Rev. B. 2015; 92(20): 205203. https://doi.org/10.1103/PhysRevB.92.205203

11. Volodin V.A., Efremov M.D., Preobrazhensky V.V., Semyagin B.R., Bolotov V.V., Sachkov V.A., Galaktionov E.A., Kretinin A.V. Investigation of phonon-plasmon interaction in GaAs/AlAs tunnel superlattices. Pis’ma v zhurnal tekhnicheskoi fiziki. 2000; 71(11): 698—704. (In Russ.)

12. Kulik L.V., Kukushkin I.V., Kirpichev V.E., Klitzing K.V., Eberl K. Interaction between intersubband Bernstein modes and coupled plasmon-phonon modes. Phys. Rev. B, 2000; 61(19): 12717—12720. https://doi.org/10.1103/PhysRevB.61.12717

13. Mandal P.K., Chikan V. Plasmon-phonon coupling in charged n-type CdSe quantum dots: a THz time-domain spectroscopic study. Nano Lett., 2007; 7(8): 2521—2528. https://doi.org/10.1021/nl070853q

14. Stepanov N., Grabov V. Optical properties Bi1-xSbx crystals, related electron-plasmon and plasmon-phonon interactions. Izv. RGPU im. Gertsena, 2004; 4(8): 52—64. (In Russ.)

15. Trajic J., Romcevic N., Romcevic M., Nikiforov V.N. Plasmon-phonon and plasmon-two different phonon interaction in Pb1-xMnxTe mixed crystals. Mater. Res. Bull., 2007; 42(12): 2192—2201. https://doi.org/10.1016/j.materresbull.2007.01.003

16. Chudzinski P. Resonant plasmon-phonon coupling and its role in magneto-thermoelectricity in bismuth. Eur. Phys. J. B, 2015; 88(12): 344. https://doi.org/10.1140/epjb/e2015-60674-3

17. Belov A.G., Denisov I.A., Kanevskii V.E., Pashkova N.V., Lysenko A.P. Determining the free carrier density in CdxHg1-xTe solid solutions from far-infrared reflection spectra. Semiconductors, 2017; 51(13): 1732—1736. https://doi.org/10.1134/S1063782617130048

18. Yu P. Y., Cardona M. Fundamentals of Semiconductors. Berlin; Heidelberg: Springer-Verlag; 2010. 778 p. https://doi.org/10.1007/978-3-642-00710-1

19. Vinogradov E.A., Vodopyanov L.K. Graphical method for determining phonon frequencies from reflection spectra of crystals in the far infrared region of the spectrum. Kratkie soobtsheniya po fizike, 1972; (11): 29—32. (In Russ.)

20. Belogorokhov A.I., Belogorokhova L. I. Optical phonons in cylindrical filaments of porous GaP. Fizika tverdogo tela, 2001; 43(9): 1693—1697. (In Russ.). https://journals.ioffe.ru/articles/viewPDF/38320

21. Yugova T.G., Belov A.G., Knyazev S.N. Magnetoplastic effect in Te-doped GaAs single crystals. Crystallography Reports, 2020; 65(1); 7—11. https://doi.org/10.1134/S1063774520010277

22. Belova I.M., Belov A.G., Kanevskii V.E., Lysenko A.P. Determining the concentration of free electrons in n-InSb from far-infrared reflectance spectra with allowance for plasmon-phonon coupling. Semiconductors, 2018; 52(15): 1942—1946. https://doi.org/10.1134/S1063782618150034

23. Pankove J.I. Optical processes in semiconductors. New York: Prentice Hall; 1971. 422 p.

24. Madelung O. Physics of III-V compounds. New York: John Wiley & Sons, Inc.; 1964. 409 p.

25. Bublik V.T., Milvidsky M.G. Intrinsic point defects, nonstoichiometry and microdefects in A3B5 compounds. Materialovedenie, 1997; (2): 21—29. (In Russ.)


Review

For citations:


Yugova T.G., Belov A.G., Kanevskii V.E., Kladova E.I., Knyazev S.N., Parfent'eva I.B. Comparison between optical and electrophysical data on free electron concentration in n-InAs samples. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(3):153-161. (In Russ.) https://doi.org/10.17073/1609-3577-2021-3-153-161

Views: 477


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)