Comparison between optical and electrophysical data on free electron concentration in n-InAs samples
https://doi.org/10.17073/1609-3577-2021-3-153-161
Abstract
A theoretical model has been developed for determining free electron concentration in n-InAs from characteristic points in far infrared region of reflection spectra. We show that when determining free electron concentration one should take into account the plasmon-phonon coupling, otherwise free electron concentration will be overestimated. We have calculated electron concentration, Nopt, as a function of characteristic wave number, ν+, which is described by a third order polynomial.
Twenty one n-InAs samples (5-doped with tin and 16-doped with sulfur) have been tested at room temperature for electron concentration using two methods, i.e., the conventional four-probe (Van der Pau) method (NHall) and the optical method developed by us (Nopt). The reflective surfaces of investigated samples were processed either with chemical-mechanical polishing or treating with short-grained abrasive powder.
It was shown that for all the investigated samples the condition Nopt > NHall was relevant. The difference between optical and electrophysical electron concentration values has been shown to be greater in case of chemically polished reflective surface of the sample and smaller in case of abrasive-treated one.
The experimental results have been compared with the same data previously obtained for n-GaAs samples. Qualitative model has been suggested to explain obtained experimental data.
About the Authors
T. G. YugovaRussian Federation
2 Elektrodnaya Str., Moscow 111524
Tatyana G. Yugova — Cand.Sci. (Eng.), Senior Researcher
A. G. Belov
Russian Federation
2 Elektrodnaya Str., Moscow 111524
Aleksandr G. Belov — Cand. Sci. (Phys.–Math.), Leading Researcher
V. E. Kanevskii
Russian Federation
2 Elektrodnaya Str., Moscow 111524
Vladimir E. Kanevskii — Cand. Sci. (Eng.), Senior Researcher
E. I. Kladova
Russian Federation
2 Elektrodnaya Str., Moscow 111524
Evgeniya I. Kladova — Researcher
S. N. Knyazev
Russian Federation
2 Elektrodnaya Str., Moscow 111524
Stanislav N. Knyazev — Cand. Sci. (Eng.), Head of Laboratory
I. B. Parfent'eva
Russian Federation
2 Elektrodnaya Str., Moscow 111524
Irina B. Parfent'eva — Leading Engineer-Technologist
References
1. Yugova T.G., Belov A.G., Kanevskii V.E., Kladova E.I., Knyazev S.N. Comparison between optical and electrophysical data on free electron concentration in tellurim doped n-GaAs. Modern Electronic Materials, 2020; 6(3): 85—89. https://doi.org/10.3897/j.moem.6.3.64492
2. Galkin G.N., Blinov L.M., Vavilov V.S., Solomatin A.G. Plasma resonance on nonequilibrium carriers in semiconductors. Pis’ma v zhurnal tekhnicheskoi fiziki, 1968; 7(3): 93—96. (In Russ.)
3. Belogorokhov A.I., Belov A.G., Petrovitch P.L., Rashevskaya E.P. Determination of the concentration of free charge carriers in Pb1-xSnxTe taking into account the damping of plasma oscillations. Optika i spectroskopiya, 1987; 63(6): 1293—1296. (In Russ.)
4. Belogorokhov A.I., Belogorokhova L.I., Belov A.G., Rashevskaya E.P. Plasma resonance of free charge carriers and estimation of some parameters of the band structure of the material CdxHg1–xTe. Fizika i tekhnika poluprovodnikov, 1991; 25(7): 1196–1203. (In Russ.). https://journals.ioffe.ru/articles/viewPDF/23491
5. Sharov M.K. Plasma resonance in Pb1-xAgxTe alloys. Semiconductors, 2014; 48(3): 299—301. https://doi.org/10.1134/S1063782614030245
6. Rokakh A.G., Shishkin M.I., Skaptsov A.A., Puzynya V.A. On the possibility of the plasma resonance in CdS–PbS films in the middle infrared region. Prikladnaya Fizika. 2014; (5): 58—60. (In Russ.)
7. Varga B.B. Coupling of plasmons to polar phonons in degenerate semiconductors. Phys. Rev., 1965; 137(6A): 1896—1901. https://doi.org/10.1103/PhysRev.137.A1896
8. Singwi K.S., Tosi M.P. Interaction of plasmons and optical phonons in degenerate semiconductors. Phys. Rev., 1966; 147(2): 658—662. https://doi.org/10.1103/PhysRev.147.658
9. Shkerdin G., Rabbaa S., Stiens J., Vounckx R. Influence of electron scattering on phonon-plasmon coupled modes dispersion and free electron absorption in n-doped GaN semiconductors at mid-IR wavelengths. Phys. Status Solidi (b), 2014; 251(4): 882—891. https://doi.org/10.1002/pssb.201350039
10. Ishioka K., Brixius K., Höfer U., Rustagi A., Thatcher E.M., Stanton C.J., Petek Hr. Dynamically coupled plasmon-phonon modes in GaP: an indirect-gap polar semiconductor. Phys. Rev. B. 2015; 92(20): 205203. https://doi.org/10.1103/PhysRevB.92.205203
11. Volodin V.A., Efremov M.D., Preobrazhensky V.V., Semyagin B.R., Bolotov V.V., Sachkov V.A., Galaktionov E.A., Kretinin A.V. Investigation of phonon-plasmon interaction in GaAs/AlAs tunnel superlattices. Pis’ma v zhurnal tekhnicheskoi fiziki. 2000; 71(11): 698—704. (In Russ.)
12. Kulik L.V., Kukushkin I.V., Kirpichev V.E., Klitzing K.V., Eberl K. Interaction between intersubband Bernstein modes and coupled plasmon-phonon modes. Phys. Rev. B, 2000; 61(19): 12717—12720. https://doi.org/10.1103/PhysRevB.61.12717
13. Mandal P.K., Chikan V. Plasmon-phonon coupling in charged n-type CdSe quantum dots: a THz time-domain spectroscopic study. Nano Lett., 2007; 7(8): 2521—2528. https://doi.org/10.1021/nl070853q
14. Stepanov N., Grabov V. Optical properties Bi1-xSbx crystals, related electron-plasmon and plasmon-phonon interactions. Izv. RGPU im. Gertsena, 2004; 4(8): 52—64. (In Russ.)
15. Trajic J., Romcevic N., Romcevic M., Nikiforov V.N. Plasmon-phonon and plasmon-two different phonon interaction in Pb1-xMnxTe mixed crystals. Mater. Res. Bull., 2007; 42(12): 2192—2201. https://doi.org/10.1016/j.materresbull.2007.01.003
16. Chudzinski P. Resonant plasmon-phonon coupling and its role in magneto-thermoelectricity in bismuth. Eur. Phys. J. B, 2015; 88(12): 344. https://doi.org/10.1140/epjb/e2015-60674-3
17. Belov A.G., Denisov I.A., Kanevskii V.E., Pashkova N.V., Lysenko A.P. Determining the free carrier density in CdxHg1-xTe solid solutions from far-infrared reflection spectra. Semiconductors, 2017; 51(13): 1732—1736. https://doi.org/10.1134/S1063782617130048
18. Yu P. Y., Cardona M. Fundamentals of Semiconductors. Berlin; Heidelberg: Springer-Verlag; 2010. 778 p. https://doi.org/10.1007/978-3-642-00710-1
19. Vinogradov E.A., Vodopyanov L.K. Graphical method for determining phonon frequencies from reflection spectra of crystals in the far infrared region of the spectrum. Kratkie soobtsheniya po fizike, 1972; (11): 29—32. (In Russ.)
20. Belogorokhov A.I., Belogorokhova L. I. Optical phonons in cylindrical filaments of porous GaP. Fizika tverdogo tela, 2001; 43(9): 1693—1697. (In Russ.). https://journals.ioffe.ru/articles/viewPDF/38320
21. Yugova T.G., Belov A.G., Knyazev S.N. Magnetoplastic effect in Te-doped GaAs single crystals. Crystallography Reports, 2020; 65(1); 7—11. https://doi.org/10.1134/S1063774520010277
22. Belova I.M., Belov A.G., Kanevskii V.E., Lysenko A.P. Determining the concentration of free electrons in n-InSb from far-infrared reflectance spectra with allowance for plasmon-phonon coupling. Semiconductors, 2018; 52(15): 1942—1946. https://doi.org/10.1134/S1063782618150034
23. Pankove J.I. Optical processes in semiconductors. New York: Prentice Hall; 1971. 422 p.
24. Madelung O. Physics of III-V compounds. New York: John Wiley & Sons, Inc.; 1964. 409 p.
25. Bublik V.T., Milvidsky M.G. Intrinsic point defects, nonstoichiometry and microdefects in A3B5 compounds. Materialovedenie, 1997; (2): 21—29. (In Russ.)
Review
For citations:
Yugova T.G., Belov A.G., Kanevskii V.E., Kladova E.I., Knyazev S.N., Parfent'eva I.B. Comparison between optical and electrophysical data on free electron concentration in n-InAs samples. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(3):153-161. (In Russ.) https://doi.org/10.17073/1609-3577-2021-3-153-161