Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Degradation of the electrical conductivity of the charged domain wall in reduced lithium niobate

https://doi.org/10.17073/1609-3577-2022-1-39-51

Abstract

In the present work, we investigated the effect of prolonged exposure on the electrical conductivity of crystals with a charged domain wall (CDW) in congruent lithium niobate crystals (LiNbO3, LN) of a nonpolar x-cut. Bidomain ferroelectric structures containing charged head-to-head domain boundaries were formed in the samples using methods of diffusion annealing in the air near the Curie temperature and infrared annealing in an oxygen-free environment. Reduction annealing of crystals in a nitrogen atmosphere was carried out to form color centers and concomitant increase in conductivity. Using an atomic force microscope (AFM) we observed the effect of degradation of the current value recorded when measuring the I-V curve. The influence of storage conditions on the electrical conductivity of CDW was studied. It was found that this effect was not related to the influence of the surrounding atmosphere on the surface but was presumably related to the redistribution of charge carriers shielding the bound charge of the CDW.

About the Authors

A. M. Kislyuk
National University of Science and Technology MISiS
Russian Federation

4–1 Leninsky Ave., Moscow 119049

Alexander M. Kislyuk — 1st Category Engineer, Researcher



T. S. Ilina
National University of Science and Technology MISiS
Russian Federation

4–1 Leninsky Ave., Moscow 119049

Tatiana S. Ilina — Master’s Student



I. V. Kubasov
National University of Science and Technology MISiS
Russian Federation

4–1 Leninsky Ave., Moscow 119049

Ilya V. Kubasov — Assistant



D. A. Kiselev
National University of Science and Technology MISiS
Russian Federation

4–1 Leninsky Ave., Moscow 119049

Dmitry A. Kiselev — Cand. Sci. (Phys.-Math.), Senior Researcher



A. A. Temirov
National University of Science and Technology MISiS
Russian Federation

4–1 Leninsky Ave., Moscow 119049

Alexander A. Temirov — Assistant



A. V. Turutin
National University of Science and Technology MISiS
Russian Federation

4–1 Leninsky Ave., Moscow 119049

Andrey V. Turutin — Cand. Sci. (Phys.-Math.), Researcher



A. S. Shportenko
National University of Science and Technology MISiS
Russian Federation

4–1 Leninsky Ave., Moscow 119049

Andrey S. Shportenko — Junior Researcher



M. D. Malinkovich
National University of Science and Technology MISiS
Russian Federation

4–1 Leninsky Ave., Moscow 119049

Mikhail D. Malinkovich — Cand. Sci. (Phys.-Math.), Associate Professor



Yu. N. Parkhomenko
National University of Science and Technology MISiS; Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

4–1 Leninsky Ave., Moscow 119049

2 Elektrodnaya Str., Moscow 111524

Yuri N. Parkhomenko — Dr. Sci. (Phys.-Math.), Professor, Scientific Consultant



References

1. Eliseev E.A., Morozovska A.N., Svechnikov G.S., Gopalan V., Shur V.Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Physical Review B: Condensed Matter and Materials Physics. 2011; 83(23): 235313. https://doi.org/10.1103/PhysRevB.83.235313

2. Wolba B., Seidel J., Cazorla C., Godau C., Haußmann A., Eng L.M. Resistor network modeling of conductive domain walls in lithium niobate. Advanced Electronic Materials. 2018; 4(1): 1700242. https://doi.org/10.1002/aelm.201700242

3. Schröder M., Haußmann A., Thiessen A., Soergel E., Woike T., Eng L.M. Conducting domain walls in lithium niobate single crystals. Advanced Functional Materials. 2012; 22(18): 3936—3944. https://doi.org/10.1002/adfm.201201174

4. Werner C.S., Herr S.J., Buse K., Sturman B., Soergel E., Razzaghi C., Breunig I. Large and accessible conductivity of charged domain walls in lithium niobate. Scientific Reports. 2017; 7(1): 9862. https://doi.org/10.1038/s41598-017-09703-2

5. Vasudevan R.K., Wu W., Guest J.R., Baddorf A.P., Morozovska A.N., Eliseev E.A., Balke N., Nagarajan V., Maksymovych P., Kalinin S.V. Domain wall conduction and polarization-mediated transport in ferroelectrics. Advanced Functional Materials. 2013; 23(20): 2592—2616. https://doi.org/10.1002/adfm.201300085

6. Gureev M.Y., Tagantsev A.K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Physical Review B: Condensed Matter and Materials Physics. 2011; 83(18): 184104. https://doi.org/10.1103/PhysRevB.83.184104

7. Kubasov I.V., Kislyuk A.M., Ilina T.S., Shportenko A.S., Kiselev D.A., Turutin A.V., Temirov A.A., Malinkovich M.D., Parkhomenko Y.N. Conductivity and memristive behavior of completely charged domain walls in reduced bidomain lithium niobate. Journal of Materials Chemistry C. 2021; 9(43): 15591—15607. https://doi.org/10.1039/d1tc04170c

8. Sluka T., Tagantsev A.K., Bednyakov P., Setter N. Free-electron gas at charged domain walls in insulating BaTiO3. Nature Communications. 2013; 4(1): 1808. https://doi.org/10.1038/ncomms2839

9. Vul B.M., Guro G.M., Ivanchik I.I. Encountering domains in ferroelectrics. Ferroelectrics. 1973; 6(1): 29—31. https://doi.org/10.1080/00150197308237691

10. Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.A., Malinkovich M.D., Polisan A.A., Parkhomenko Yu.N. Formation of stable induced domains at charged domain boundary in lithium niobate using scanning probe microscopy. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019; 22(1): 5—17. (In Russ.). https://doi.org/10.17073/1609-3577-2019-1-5-17

11. Alikin D.O., Ievlev A.V., Turygin A.P., Lobov A.I., Kalinin S.V., Shur V.Y. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Applied Physics Letters. 2015; 106(18): 182902. https://doi.org/10.1063/1.4919872

12. Schultheiß J., Rojac T., Meier D. Unveiling alternating current electronic properties at ferroelectric domain walls. Advanced Electronic Materials. 2022; 8(6): 2100996. https://doi.org/10.1002/aelm.202100996

13. Jiang A.-Q., Geng W.P., Lv P., Hong J., Jiang J., Wang C., Chai X.J., Lian J.W., Zhang Y., Huang R., Zhang D.W., Scott J.F., Hwang C.S. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nature Materials. 2020; 19(11): 1188—1194. https://doi.org/10.1038/s41563-020-0702-z

14. Wang C., Jiang J., Chai X., Lian J., Hu X., Jiang A.Q. Energy-efficient ferroelectric domain wall memory with controlled domain switching dynamics. ACS Applied Materials & Interfaces. 2020; 12(40): 44998—45004. https://doi.org/10.1021/acsami.0c13534

15. Qian Y., Zhang Z., Liu Y., Xu J., Zhang G. Graphical direct writing of macroscale domain structures with nanoscale spatial resolution in nonpolar-cut lithium niobate on insulators. Journal of Applied Physics. 2022; 17: 054049. https://doi.org/10.1103/PhysRevApplied.17.054049

16. Krestinskaya O., James A.P., Chua L.O. Neuromemristive circuits for edge computing: A review. IEEE Transactions on Neural Networks and Learning Systems. 2020; 31(1): 4—23. https://doi.org/10.1109/TNNLS.2019.2899262

17. Chaudhary P., Lu H., Lipatov A., Ahmadi Z., McConville J.P.V., Sokolov A., Shield J.E., Sinitskii A., Gregg J.M., Gruverman A. Low-voltage domain-wall LiNbO3 memristors. Nano Letters. 2020; 20(8): 5873—5878. https://doi.org/10.1021/acs.nanolett.0c01836

18. McConville J.P.V., Lu H., Wang B., Tan Y., Cochard C., Conroy M., Moore K., Harvey A., Bangert U., Chen L., Gruverman A., Gregg J.M. Ferroelectric domain wall memristor. Advanced Functional Materials. 2020; 30(28): 2000109. https://doi.org/10.1002/adfm.202000109

19. Jiang J., Wang C., Chai X., Zhang Q., Hou X., Meng F., Gu L., Wang J., Jiang A.Q. Surface-bound domain penetration and large wall current. Advanced Electronic Materials. 2021; 7(3): 2000720. https://doi.org/10.1002/aelm.202000720

20. Maksymovych P., Seidel J., Chu Y.H., Wu P., Baddorf A.P., Chen L.-Q.Q., Kalinin S.V., Ramesh R. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Letters. 2011; 11(5): 1906—1912. https://doi.org/10.1021/nl104363x

21. Lu H., Tan Y., McConville J.P.V., Ahmadi Z., Wang B., Conroy M., Moore K., Bangert U., Shield J.E., Chen L.Q., Gregg J.M., Gruverman A. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Advanced Materials. 2019; 31(48): 1902890. https://doi.org/10.1002/adma.201902890

22. Shur V.Y., Rumyantsev E.L., Nikolaeva E.V., Shishkin E.I. Formation and evolution of charged domain walls in congruent lithium niobate. Applied Physics Letters. 2000; 77(22): 3636—3638. https://doi.org/10.1063/1.1329327

23. Ievlev A.V., Alikin D.O., Morozovska A.N., Varenyk O.V., Eliseev E.A., Kholkin A.L., Shur V.Y., Kalinin S.V. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. ACS Nano. 2015; 9(1): 769—777. https://doi.org/10.1021/nn506268g

24. Turygin A.P., Alikin D.O., Kosobokov M.S., Ievlev A.V., Shur V.Y. Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM tip. ACS Applied Materials & Interfaces. 2018; 10(42): 36211—36217. https://doi.org/10.1021/acsami.8b10220

25. Ievlev A.V., Morozovska A.N., Shur V.Y., Kalinin S.V. Ferroelectric switching by the grounded scanning probe microscopy tip. Physical Review B: Condensed Matter and Materials Physics. 2015; 91(21): 214109. https://doi.org/10.1103/PhysRevB.91.214109

26. Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Y.N. Bidomain ferroelectric crystals: properties and prospects of application. Russian Microelectronics. 2021; 50(8): 571—616. https://doi.org/10.1134/S1063739721080035

27. Evlanova N.L., Rashkovich L.N. Annealing effect on domain-structure of lithium meta-niobate single-crystals. Soviet Physics, Solid State. 1974; 16: 354.

28. Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3. Japanese Journal of Applied Physics. 1977; 16(6): 1069—1070. https://doi.org/10.1143/jjap.16.1069

29. Kubasov I.V., Timshina M.S., Kiselev D.A., Malinkovich M.D., Bykov A.S., Parkhomenko Y.N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing. Crystallography Reports. 2015; 60(5): 700—705. https://doi.org/10.1134/S1063774515040136

30. Kubasov I.V., Kislyuk A.M., Bykov A.S., Malinkovich M.D., Zhukov R.N., Kiselev D.A., Ksenich S.V., Temirov A.A., Timushkin N.G., Parkhomenko Y.N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing. Crystallography Reports. 2016; 61(2): 258—262. https://doi.org/10.1134/S1063774516020115

31. Kugel V.D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals. Applied Physics Letters. 1993; 62(23): 2902—2904. https://doi.org/10.1063/1.109191

32. Rosenman G., Kugel V.D., Shur D. Diffusion-induced domain inversion in ferroelectrics. Ferroelectrics. 1995; 172(1): 7—18. https://doi.org/10.1080/00150199508018452

33. Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices. In: IEEE 1986 Ultrasonics Symposium. Williamsburg, VA, USA. 17–19 November 1986. USA: IEEE; 2005: 719—722. https://doi.org/10.1109/ULTSYM.1986.198828

34. Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Applied Physics Letters. 1987; 50(20): 1413—1414. https://doi.org/10.1063/1.97838

35. Nakamura K., Shimizu H. Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3. Applied Physics Letters. 1990; 56(16): 1535—1536. https://doi.org/10.1063/1.103213

36. Zhu Y.Y., Zhu S.N., Hong J.F., Ming N. Ben domain inversion in LiNbO3 by proton exchange and quick heat treatment. Applied Physics Letters. 1994; 65(5): 558—560. https://doi.org/10.1063/1.112295

37. Zhang Z.Y., Zhu Y.Y., Zhu S.N., Ming N. Ben domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3. Physica Status Solidi A: Applied Research. 1996; 153(1): 275—279. https://doi.org/10.1002/pssa.2211530128

38. Åhlfeldt H., Webjörn J., Arvidsson G. Periodic domain inversion and generation of blue light in lithium tantalate waveguides. IEEE Photonics Technology Letters. 1991; 3(7): 638—639. https://doi.org/10.1109/68.87938

39. Bykov A.S., Grigoryan S.G., Zhukov R.N., Kiselev D.A., Ksenich S.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method. Russian Microelectronics. 2014; 43(8): 536—542. https://doi.org/10.1134/S1063739714080034

40. Tasson M., Legal H., Peuzin J.C., Lissalde F.C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie. Physica Status Solidi A: Applied Research. 1975; 31(2): 729—737. https://doi.org/10.1002/pssa.2210310246

41. Tasson M., Legal H., Gay J.C., Peuzin J.C., Lissalde F.C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point. Ferroelectrics. 1976; 13(1): 479—481. https://doi.org/10.1080/00150197608236646

42. Luh Y.S., Feigelson R.S., Fejer M.M., Byer R.L. Ferroelectric domain structures in LiNbO3 single-crystal fibers. Journal of Crystal Growth. 1986; 78(1): 135—143. https://doi.org/10.1016/0022-0248(86)90510-5

43. Blagov A.E., Bykov A.S., Kubasov I.V., Malinkovich M.D., Pisarevskii Y.V., Targonskii A.V., Eliovich I.A., Kovalchuk M.V. An electromechanical X-ray optical element based on a hysteresis-free monolithic bimorph crystal. Instruments and Experimental Techniques. 2016; 59(5): 728—732. https://doi.org/10.1134/S0020441216050043

44. Marchenkov N., Kulikov A., Targonsky A., Eliovich Y., Pisarevsky Y., Seregin A., Blagov A., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Resonant mode. Sensors and Actuators A: Physical. 2019; 293(10): 48—55. https://doi.org/10.1016/j.sna.2019.04.028

45. Kulikov A., Blagov A., Marchenkov N., Targonsky A., Eliovich Y., Pisarevsky Y., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Static and quasistatic modes. Sensors and Actuators A: Physical. 2019; 291(6): 68—74. https://doi.org/10.1016/j.sna.2019.03.041

46. Nakamura K., Ando H., Shimizu H. Bending Vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer. Japanese Journal of Applied Physics. 1987; 26(S2): 198. https://doi.org/10.7567/JJAPS.26S2.198

47. Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer. Ferroelectrics. 1989; 93(1): 211—216. https://doi.org/10.1080/00150198908017348

48. Nakamura K. Antipolarity domains formed by heat treatment of ferroelectric crystals and their applications. Japanese Journal of Applied Physics. 1992; 31(S1): 9—13. https://doi.org/10.7567/JJAPS.31S1.9

49. Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer. Japanese Journal of Applied Physics. 1993; 32(5S): 2415—2417. https://doi.org/10.1143/JJAP.32.2415

50. Kubasov I.V., Kislyuk A.M., Turutin A.V., Bykov A.S., Kiselev D.A., Temirov A., Zhukov R.N., Sobolev N.A., Malinkovich M.D., Parkhomenko Y.N. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal. Sensors (Switzerland). 2019; 19(3): 614. https://doi.org/10.3390/s19030614

51. Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. Journal of Magnetism and Magnetic Materials. 2019; 486. https://doi.org/10.1016/j.jmmm.2019.04.061

52. Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Pakhomov O.V., Sobolev N.A., Kholkin A.L. Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2019; 66(9): 1480—1487. https://doi.org/10.1109/tuffc.2019.2908396

53. Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Sobolev N.A., Kholkin A.L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3-based composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2020; 67(6): 1219—1229. https://doi.org/10.1109/tuffc.2020.2967842

54. Godau C., Kämpfe T., Thiessen A., Eng L.M., Haußmann A. Enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano. 2017; 11(5): 4816—4824. https://doi.org/10.1021/acsnano.7b01199

55. Volk T.R., Gainutdinov R.V., Zhang H.H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films. Applied Physics Letters. 2017; 110(13): 1—6. https://doi.org/10.1063/1.4978857

56. Schröder M., Chen X., Haußmann A., Thiessen A., Poppe J., Bonnell D.A., Eng L.M. Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals. Materials Research Express 2014; 1(3): 035012. https://doi.org/10.1088/2053-1591/1/3/035012

57. Jorgensen P.J., Bartlett R.W. High temperature transport processes in lithium niobate. Journal of Physics and Chemistry of Solids. 1969; 30(12): 2639—2648. https://doi.org/10.1016/0022-3697(69)90037-7

58. Limb Y., Cheng K.W., Smyth D.M. Composition and electrical properties in LiNbO3. Ferroelectrics. 1981; 38(1): 813—816. https://doi.org/10.1080/00150198108209546

59. Schirmer O.F., Thiemann O., Wöhlecke M. Defects in LiNbO3–I. Experimental aspects. Journal of Physics and Chemistry of Solids. 1991; 52(1): 185—200. https://doi.org/10.1016/0022-3697(91)90064-7

60. Garcia-Cabanes A., Dieguez E., Cabrera J.M., Agullo-Lopez F. Contributing bands to the optical absorption of reduced LiNbO3 : thermal and optical excitation. Journal of Physics: Condensed Matter. 1989; 1(36): 6453—6462. https://doi.org/10.1088/0953-8984/1/36/013

61. Bordui P.F., Jundt D.H., Standifer E.M., Norwood R.G., Sawin R.L., Galipeau J.D. Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance. Journal of Applied Physics. 1999; 85(7): 3766—3769. https://doi.org/10.1063/1.369775

62. Arizmendi L., Cabrera J.M., Agullo-Lopez F. Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction. Journal of Physics C: Solid State Physics. 1984; 17(3): 515—529. https://doi.org/10.1088/0022-3719/17/3/021

63. Shi J., Fritze H., Weidenfelder A., Swanson C., Fielitz P., Borchardt G., Becker K.-D. Optical absorption of electronic defects and chemical diffusion in vapor transport equilibrated lithium niobate at high temperatures. Solid State Ionics. 2014; 262: 904—907. https://doi.org/10.1016/j.ssi.2013.11.025

64. Esin A.A., Akhmatkhanov A.R., Shur V.Y. The electronic conductivity in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics. 2016; 496(1): 102—109. https://doi.org/10.1080/00150193.2016.1157438

65. Shportenko A.S., Kislyuk A.M., Turutin A.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Effect of contact phenomena on the electrical conductivity of reduced lithium niobate. Modern Electronic Materials. 2021; 7(4): 167—175. https://doi.org/10.3897/j.moem.7.4.78569

66. Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.V., Malinkovich M.D., Polisan A.A., Parkhomenko Y.N. Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy. Modern Electronic Materials. 2019; 5(2): 51—60. https://doi.org/10.3897/j.moem.5.2.51314

67. Lushkin A.Y., Nazarenko V.B., Pilipchak K.N., Shnyukov V.F., Naumovets A.G. The impact of annealing and evaporation of crystals on their surface composition. Journal of Physics D: Applied Physics. 1999; 32(1): 9—15. https://doi.org/10.1088/0022-3727/32/1/003

68. Schirmer O. F., Imlau M., Merschjann C., Schoke B. Electron small polarons and bipolarons in LiNbO3. Journal of Physics: Condensed Matter. 2009; 21(12): 123201. https://doi.org/10.1088/0953-8984/21/12/123201

69. Dutt D.A., Feigl F.J., DeLeo G.G. Optical absorption and electron paramagnetic resonance studies of chemically reduced congruent lithium niobate. Journal of Physics and Chemistry of Solids. 1990; 51(5): 407—415. https://doi.org/10.1016/0022-3697(90)90175-F

70. Jhans H., Honig J.M., Rao C.N.R. Optical properties of reduced LiNbO3. Journal of Physics C: Solid State Physics. 1986; 19(19): 3649—3658. https://doi.org/10.1088/0022-3719/19/19/019

71. Imlau M., Badorreck H., Merschjann C. Optical nonlinearities of small polarons in lithium niobate. Applied Physics Reviews. 2015; 2(4): 040606. https://doi.org/10.1063/1.4931396


Review

For citations:


Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.V., Shportenko A.S., Malinkovich M.D., Parkhomenko Yu.N. Degradation of the electrical conductivity of the charged domain wall in reduced lithium niobate. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(1):39-51. (In Russ.) https://doi.org/10.17073/1609-3577-2022-1-39-51

Views: 554


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)