Электрические и гальваномагнитные свойства монокристаллов черного фосфора
https://doi.org/10.17073/1609-3577-2022-1-5-22
Аннотация
Исследованы монокристаллы черного фосфора (b-P) с n-типом электрической проводимости, изготовленные в установке высокого давления (~1 ГПа) с шестью алмазными наковальнями при температуре 800 °C. Время синтеза составило 12 ч. Зависимости электрической проводимости σ(Т,В) и постоянной Холла Rh(Т,В) от температуры в диапазоне 2 < Т < 300 К и от магнитного поля с индукцией 0 < В < 8 Тл рассмотрены на основе однозонной и двухзонной моделей. Подгонка экспериментальных кривых σ(Т,В) и Rh(Т,В) на основе этих моделей указывает на следующие главные особенности исследованных монокристаллов: (1) собственный характер проводимости, (2) приблизительное равенство концентраций и подвижностей электронов и дырок, (3) анизотропия проводимости, концентрации и подвижности электронов и дырок, а также (4) сочетание отрицательного и положительного вкладов в магнитосопротивление (МС, магниторезистивный эффект). В нулевом магнитном поле и при температуре ниже 50—70 К коэффициент анизотропии (α = [σа(Т) – σс(Т)]/σс(Т)) положителен, в то время как выше 220 К его знак изменяется на отрицательный вследствие специфического сочетания температурных зависимостей концентрации и подвижности носителей заряда, движущихся вдоль кристаллографических осей а и с. Показано, что отрицательный знак относительного МС преобладает при Т < 25 К и В < 6 Тл и, предположительно, обусловлен эффектами сильной локализации вследствие структурного беспорядка. Положительный знак МС (положительный магниторезистивный эффект) обусловлен движением носителей заряда под действием силы Лоренца и проявляется при температурах выше 25 К и в магнитных полях 6—8 Тл.
Ключевые слова
Об авторах
А. А. ХарченкоБеларусь
ул. Бобруйская, д. 11, Минск, 220006
Харченко Андрей Андреевич — канд. физ.-мат. наук, старший научный сотрудник, лаборатория физики перспективных материалов
Ю. А. Федотова
Беларусь
ул. Бобруйская, д. 11, Минск, 220006
Федотова Юлия Александровна — доктор физ.-мат. наук, главный научный сотрудник, заместитель директора
В. Ю. Слабухо
Беларусь
просп. Независимости, д. 4, Минск, 220030
Слaбухо Валерия Юрьевна — студент
А. К. Федотов
Беларусь
ул. Бобруйская, д. 11, Минск, 220006
Федотов Александр Кириллович — доктор физ.-мат. наук, профессор, главный научный сотрудник лаборатории физики перспективных материалов
А. В. Пашкевич
Беларусь
ул. Бобруйская, д. 11, Минск, 220006;
просп. Независимости, д. 4, Минск, 220030
Пашкевич Алексей Владимирович — младший научный сотрудник лаборатории физики перспективных материалов (1); аспирант (2)
И. А. Свито
Беларусь
просп. Независимости, д. 4, Минск, 220030
Свито Иван Антонович — канд. физ.-мат. наук, заместитель заведующего кафедрой, ведущий научный сотрудник, доцент кафедры энергофизики физического факультета
М. В. Бушинский
Беларусь
ул. П. Бровки, д. 19, Минск, 220072
Бушинский Максим Владиславович — канд. физ.-мат. наук, заведующий лабораторией неметаллических ферромагнетиков
Список литературы
1. Inamuddin, Boddula R., Asiri A.M. (Eds.). Black phosphorus: synthesis, properties and applications. Springer; 2020. 191 p.
2. Narita S., Akahama Y., Tsukyama Y., Muro K., Mori Sh., Endo S., Tanlguchi M., Seki M., Suga S., Mikuni A., Kanzaki H. Electrical and optical properties of black phosphorus single crystals. Physica B. Condensed Matter. 1983; (117-118): 422—424. https://doi.org/10.1016/0378-4363(83)90547-8
3. Akahama Y., Miyakawa M., Taniguchi T., Sano-Furukawa A., Machida Sh., Hattori T. Structure refinement of black phosphorus under high pressure. J. Chem. Phys. 2020; 153(1): 014704. https://doi.org/10.1063/5.0012870
4. Tran V., Soklaski R., Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B. 2014; 89(23): 817—824. https://doi.org/10.1103/PhysRevB.89.235319
5. Brown A., Rundqvist S. Refinement of the crystal structure of black phosphorus. Acta Cryst. 1965; 19: 684. https://doi.org/10.1107/S0365110X65004140
6. Baba M., Izumida F., Takeda Y., Shibata K., Morita A., Koike Y., Fukase T. Two-dimensional Anderson localization in black phosphoruscrystals prepared by bismuth-flux method. J. Phys. Soc. Jpn. 1991; 60(11): 3777—3783. https://doi.org/10.1143/JPSJ.60.3777
7. Li C., Tian Z. Thermal transport properties of black phosphorus: a topical review. Nanoscale Microscale Thermophys. 2017; 21(1): 45—57. https://doi.org/10.1080/15567265.2016.1278413
8. Wan B., Guo S., Sun J., Zhang Y., Wang Y., Pan C., Zhang. J. Investigating the interlayer electron transport and its influence on the whole electric properties of black phosphorus. Sci. Bull. 2019; 64: 254—260. https://doi.org/10.1016/j.scib.2018.11.026
9. Hirose K., Osada T., Uchida K., Taen T., Watanabe K., Taniguchi T., Akahama Y. Double carrier transport in electron-doped region in black phosphorus FET. Appl. Phys. Lett. 2018; 113(19): 193101. https://doi.org/10.1063/1.5048233
10. Chen X., Ponraj J.S., Fan D., Zhang H. An overview of the optical properties and applications of black phosphorus. Nanoscale. 2020; 12(6): 3513—3534. https://doi.org/10.1039/C9NR09122j
11. Bridgman P.W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914; 36(7): 1344—1363. https://doi.org/10.1021/ja02184a002
12. Gui R., Jin H., Wang Z., Li J. Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chem. Soc. Rev. 2018; 47(17): 6795—6823. https://doi.org/10.1039/C8CS00387D
13. Xia E, Wang H., Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014; 5(1): 4458. https://doi.org/10.1038/ncomms5458
14. Dhanabalan S.C., Ponraj J.S., Guo Z., Li S., Bao Q., Zhang H. Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 2017; 4(16): 1600305. https://doi.org/10.1002/advs.201600305
15. Fu Y., Wei Q., Zhang G., Sun S. Advanced phosphorus-based materials for lithium/sodium- ion batteries: recent developments and future perspectives Adv. Energy Mater. 2018; 8(13): 1702849—1702867. https://doi.org/10.1002/aenm.201702849
16. Chen P., Li N., Chen X., Ong W.J., Zhao X. The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 2017; 5(1): 014002. https://doi.org/10.1088/2053-1583/aa8d37
17. Khandelwal A., Mani K., Karigerasi M.H., Lahiri I. Phosphorene – the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng. B. 2017; 221: 17—34. https://doi.org/10.1016/j.mseb.2017.03.011
18. Pumera M. Phosphorene and black phosphorus for sensing and biosensing. Trends Anal. Chem. (TrAC Trends in Analytical Chemistry) 2017; 93: 1—6. https://doi.org/10.1016/j.trac.2017.05.002
19. Lei W., Liu G., Zhang J., Liu M. Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 2017; 46(12): 3492—3509. https://doi.org/10.1039/C7CS00021A
20. Zhang Y., Wang J., Liu Q., Gu Sh., Sun Zh., Chu P.K., Yu X. The electrical, thermal, and thermoelectric properties of black phosphorus. APL Materials. 2020; 8(12): 120903. https://doi.org/10.1063/5.0027244
21. Keyes R.W. The electrical properties of black phosphorus. Phys. Rev. 1953; 92: 580—584. https://doi.org/10.1103/PhysRev.92.580
22. Warschauer D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 1963; 34(7): 1853—1860. https://doi.org/10.1063/1.1729699
23. Maruyama Y., Suzuki S., Kobayashi K., Tanuma S. Synthesis and some properties of black phosphorus single crystals. Physica B+C. 1981; 105(1-3): 99—102. https://doi.org/10.1016/0378-4363(81)90223-0
24. Akahama Y., Endo S., Narita S. Electrical properties of black phosphorus single cry. J. Phys. Soc. Jpn. 1983; 52(6): 2148—2155. https://doi.org/10.1143/JPSJ.52.2148
25. Asahina H., Shindo K., Morita A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn. 1982; 51: 1193–1199. https://doi.org/10.1143/JPSJ.51.1193
26. Machida Y., Subedi A., Akiba K., Miyake A., Tokunaga M., Akahama Y., Izawa K., Behnia K. Observation of Poiseuille flow of phonons in black phosphorus. Sci. Adv. 2018; 4(6). https://doi.org/10.1126/sciadv.aat3374
27. Zeng Q., Sun B., Du K., Zhao W., Yu P., Zhu C., Xia J., Chen Y., Cao X., Yan Q., Shen Z., Yu T., Long Y., Koh Y.K., Liu Z. Highly anisotropic thermoelectric properties of black phosphorus crystals. 2D Mater. 2019; 6(4): 045009. https://doi.org/10.1088/2053-1583/ab2816
28. Rodrigues E.F.S., Gainza J., Serrano-Sanchez F., Lopez C., Dura O.J., Nemes N., Martinez J.L., Huttel Y., Fauth F., Fernandez-Diaz M.T., Biškup N., Alonso J.A. Structural features, anisotropic thermal expansion, and thermoelectric performance in bulk black phosphorus synthesized under high pressure. Inorg. Chem. 2020; 59(20): 14932—14943. https://doi.org/10.1021/acs.inorgchem.0c01573
29. Fei R.; Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 2014; 14(5): 2884—2889. https://doi.org/10.1021/nl500935z
30. Qiao J., Kong X., Hu Z.-X., Yang F., Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014; 5(1): 4475. https://doi.org/10.1038/ncomms5475
31. Zeng Q., Sun B., Du K., Zhao W., Yu P., Zhu Ch., Xia J., Chen Y., Cao X., Yan Q., Shen Z., Yu Ti., Long Y, Koh Y.K., Liu Zh. Highly anisotropic thermoelectric properties of black phosphorus crystals. 2D Mater. 2019; 6(4): 045009. https://doi.org/10.1088/2053-1583/ab2816
32. Morita A. Semiconducting black phosphorus. Appl. Phys. A. Solids and Surfaces. 1986; 39(4): 227—242. https://doi.org/10.1007/bf00617267
33. Shirotani I., Maniwa R., Sato H., Fukizawa A., Sato N., Maruyama Y., Kajiwara T., Inokuchi H., Akimoto S. Nippon Kagaku Kaishi. Preparation, growth of large single-crystals, and physicochemical properties of black phosphorus at high-pressures and temperatures. Chem. Soc. Jap. 1981; 10: 1604
34. Tao J., Shen W., Wu S., Liu L., Feng Z., Wang C., Hu C., Yao P., Zhang H., Pang W., Duan X., Liu J., Zhou C., Zhang D. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano. 2015; 9(11): 11362—11370. https://doi.org/10.1021/acsnano.5b05151
35. Hou Z., Yang B., Wang Y., Ding B., Zhang X, Yao Y. Liu E., Xi X, Wu G., Zeng Z., Liu Z., Wang W. Large and anisotropic linear magnetoresistance in single crystals of black phosphorus arising from mobility fluctuations. Sci. Rep. 2016; 6: 1—7. https://doi.org/10.1038/srep23807
36. Strutz T., Miura L.N., Akahama Y. Magnetotransport invеstigation on black phosphorus at low Temperatures. Physics B: Condensed Matter. 1994; 394-396(1-2): 1185—1186. https://doi.org/10.1016/0921-4526(94)90922-9
37. Kohler M. Zur magnetischen Widerstandsänderung reiner Metalle. Annalen der Physik. 1938; 424(1–2): 211—218. (In Ger.). https://doi.org/10.1002/andp.19384240124
38. Jiang X.H., Xiong F., Zhang X.W., Hua Z.H., Wang Z.H., Yang S.G. Large Magnetoresistance and hall effect in paramagnetic black phosphorus synthesized from red phosphorus. J. Phys. D: Appl. Phys. 2018; 51(9): 195101. https://doi.org/10.1088/1361-6463/aab6fa
39. Akiba K., Miyake A., Akahama Y., Matsubayashi K., Uwatoko Y., Tokunaga M. Two-carrier analyses of the transport properties of black phosphorus under pressure. Phys. Rev.В. 2017; 95: 115126. https://doi.org/10.1103/PhysRevB.95.115126
40. Endo S., Akahama Y., Terada S., Narita S. Growth of large single crystals of black phosphorus under high pressure. Jpn. J. Appl. Phys. 1982; 21(8): L482—L484. https://doi.org/10.1143/JJAP.21.L482
41. Keyes R. The Electrical properties of black phosphorus. Phys. Rev. 1988; 92: 580–584. https://doi.org/10.1103/PhysRev.92.580
42. Fedotov A.K., Kharchanka A., Fedotova J., Slabuhо V., Bushinski M., Svito I. Electric properties of black phosphorus single crystals. In: IX Intern. Sc. Conf.: Actual Problems of Solid State Physics. Minsk: Publisher A.Varaksin, 2021; 2: 47—51. http://apssp2021.site/files/APSSP-2021_Proceedings_Book_21.pdf
43. Pippard A.B. Magnetoresistance in metals. Cambridge; London: Cambridge University Press; 1989. 253 p.
44. Altshuler B.L., Aronov A.G., Khmelnitsky D.E. Effects of electron-electron collisions with small energy transfers on quantum localization. J. Phys. C: Solid State Physics. 1982; 15(36): 7367. https://doi.org/10.1088/0022-3719/15/36/018
45. Du Y., Neal A.T., Zhou H., Peide D.Y. Weak localization in few-layer black phosphorus. 2D Materials. 2016; 3(2): 024003. https://doi.org/10.1088/2053-1583/3/2/024003
46. Parish M.M., Littlewood P.B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature. 2003; 426(6963): 162—165. https://doi.org/10.1038/nature02073
47. Zhang Y.W., Ning H.L., Li Y.N., Liu Y.Z., Wang J. Negative to positive crossover of the magnetoresistance in layered WS2. Appl. Phys. Lett. 2016; 108(15): 153114. https://doi.org/10.1063/1.4946859
48. Banerjee S., Pati S.K. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers. Physical Chemistry Chemical Physics. 2016; 18(24): 16345—16352. https://doi.org/10.1039/C6CP02129H
49. Shik A.Y., Electronic properties of inhomogeneous semiconductors. Electrocomponent Science Monographs. CRC Press, 1995. 151 p.
50. Shklovskii B.I., Efros A.L. Electronic properties of doped semiconductors. In: Springer Series in Solid-State Sciences. Berlin; Heidelberg: Springer-Verlag, 1984, 400 p. https://doi.org/10.1007/978-3-662-02403-4
51. Кучис Е.В. Методы исследования эффекта Холла. М.: Радио и связь; 1990. 264 с.
52. Ashcroft N.W., Mermin N.D. Solid state physics. New York: Saunders College Publishing; 1976.
53. Asahina H., Shindo K., Morita A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys Soc. Jpn. 1982; 51: 1193—1199. https://doi.org/10.1143/JPSJ.51.1193
54. Pudalov V.M. Metallic conduction, apparent metal-insulator transition and related phenomena in two-dimensional electron liquid. In: Proceedings of the International School of Physics “Enrico Fermi”. 2004; 157. 335—356.
55. Альтшулер Б.Л., Аронов А.Г., Хмельницкий Л.Е. Об отрицательном магнетосопротивлении в полупроводниках в области прыжковой проводимости. Письма ЖЭТФ. 1982; 36(5): 157—160.
Рецензия
Для цитирования:
Харченко А.А., Федотова Ю.А., Слабухо В.Ю., Федотов А.К., Пашкевич А.В., Свито И.А., Бушинский М.В. Электрические и гальваномагнитные свойства монокристаллов черного фосфора. Известия высших учебных заведений. Материалы электронной техники. 2022;25(1):5-22. https://doi.org/10.17073/1609-3577-2022-1-5-22
For citation:
Kharchenko A.A., Fedotova J.A., Slabukho V.Yu., Fedotov A.K., Pashkevich A.V., Svito I.A., Bushinsky M.V. Electrical and galvanomagnetic properties of black phosphorus single crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(1):5-22. (In Russ.) https://doi.org/10.17073/1609-3577-2022-1-5-22