Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Electrical and galvanomagnetic properties of black phosphorus single crystals

https://doi.org/10.17073/1609-3577-2022-1-5-22

Abstract

Black phosphorus (b-P) single crystals having the n-type electrical conductivity produced in a high pressure set-up (~1 GPa) with six diamond anvils at 800 °C for 12 h have been studied. The electrical conductivity σ(Т,В) and the Hall constant Rh(Т,В) have been analyzed within one-band and two-band models as functions of temperature in the 2 < Т < 300 K range and magnetic field in the 0 < В < 8 T range. Fitting of the experimental σ(Т,В) and Rh(Т,В) curves suggests the following key properties of the crystals: (1) intrinsic conductivity type, (2) approximately equal electron and hole concentrations and mobilities, (3) anisotropic behavior of electron and hole conductivities, concentrations and mobilities and (4) combination of negative and positive contributions to magnetoresistance (magnetoresistive effect, MR). In a zero magnetic field the anisotropy coefficient α = [σа(Т) – σс(Т)]/σс(Т) below 50—70 K is positive whereas above 220 K its sign changes to negative due to a specific combination of the temperature dependences of carrier concentration and mobility. It has been shown that the negative sign of relative MR (negative magnetoresistive effect) dominates at T < 25 K and B < 6 T and is presumably caused by the effects of strong localization resulting from structural disorder. The positive MR sign (positive magnetoresistive effect) is associated with the Lorentz mechanism of carrier movement and exhibits itself above 25 K in 6–8 T magnetic fields.

About the Authors

A. A. Kharchenko
Research Institute for Nuclear Problems of Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk 220006

Andrei A. Kharchenko — Cand. Sci. (Phys.-Math.), Senior Researcher, Laboratory of Advanced Materials Physics



J. A. Fedotova
Research Institute for Nuclear Problems of Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk 220006

Julia A. Fedotova — Dr. Sci. (Phys.-Math.), Chief Researcher, Deputy-Director



V. Yu. Slabukho
Belarusian State University
Belarus

4 Nezalezhnosti Ave., Minsk 220030

Valeryia Yu. Slabukho — Student



A. K. Fedotov
Research Institute for Nuclear Problems of Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk 220006

Alexander K. Fedotov — Dr. Sci. (Phys.-Math.), Chief Researcher, Laboratory of Advanced Materials Physics



A. V. Pashkevich
Research Institute for Nuclear Problems of Belarusian State University; Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk 220006;

4 Nezalezhnosti Ave., Minsk 220030

Alexey V. Pashkevich — Junior Researcher, Laboratory of Advanced Materials Physics (1); Postgraduate Student (2)



I. A. Svito
Belarusian State University
Belarus

4 Nezalezhnosti Ave., Minsk 220030

Ivan A. Svito — Cand. Sci. (Phys.-Math.), Deputy Head of the Department, Leading Researcher, Associate Professor of Energy Physics, Faculty of Physics



M. V. Bushinsky
SSPA “Scientific-Practical Materials Research Centre of NAS of Belarus”
Belarus

19 P. Brovki Str., Minsk 220072

Maxim V. Bushinsky — Cand. Sci. (Phys.-Math.), Head of Laboratory Nonmetallic Ferromagnets



References

1. Inamuddin, Boddula R., Asiri A.M. (Eds.). Black phosphorus: synthesis, properties and applications. Springer, 2020, 191 p. https://doi.org/10.1007/978-3-030-29555-4

2. Narita S., Akahama Y., Tsukyama Y., Muro K., Mori Sh., Endo S., Tanlguchi M., Seki M., Suga S., Mikuni A., Kanzaki H. Electrical and optical properties of black phosphorus single crystals. Physica B. Condensed Matter, 1983; (117–118): 422—424. https://doi.org/10.1016/0378-4363(83)90547-8

3. Akahama Y., Miyakawa M., Taniguchi T., Sano-Furukawa A., Machida Sh., Hattori T. Structure refinement of black phosphorus under high pressure. J. Chem. Phys., 2020; 153(1): 014704. https://doi.org/10.1063/5.0012870

4. Tran V., Soklaski R., Liang Y., Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 2014; 89(23): 817—824. https://doi.org/10.1103/physrevb.89.235319

5. Brown A., Rundqvist S. Refinement of the crystal structure of black phosphorus. Acta Cryst., 1965; 19: 684. https://doi.org/10.1107/S0365110X65004140

6. Baba M., Izumida F., Takeda Y., Shibata K., Morita A., Koike Y., Fukase T. Two-dimensional Anderson localization in black phosphoruscrystals prepared by bismuth-flux method. J. Phys. Soc. Jpn., 1991; 60(11): 3777—3783. https://doi.org/10.1143/JPSJ.60.3777

7. Li C., Tian Z. Thermal transport properties of black phosphorus: a topical review. Nanoscale Microscale Thermophys, 2017; 21(1): 45–57. https://doi.org/10.1080/15567265.2016.1278413

8. Wan B., Guo S., Sun J., Zhang Y., Wang Y., Pan C., Zhang. J. Investigating the interlayer electron transport and its influence on the whole electric properties of black phosphorus. Sci. Bull., 2019; 64: 254—260. https://doi.org/10.1016/j.scib.2018.11.026

9. Hirose K., Osada T., Uchida K., Taen T., Watanabe K., Taniguchi T., Akahama Y. Double carrier transport in electron-doped region in black phosphorus FET. Appl. Phys. Lett., 2018; 113(19): 193101. https://doi.org/10.1063/1.5048233

10. Chen X., Ponraj J.S., Fan D., Zhang H. An overview of the optical properties and applications of black phosphorus. Nanoscale, 2020; 12(6): 3513—3534. https://doi.org/10.1039/c9nr09122j

11. Bridgman P.W. Two new modifications of phosphorus. J. Am. Chem. Soc., 1914; 36(7): 1344—1363. https://doi.org/10.1021/ja02184a002

12. Gui R., Jin H., Wang Z., Li J. Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chem. Soc. Rev., 2018; 47(17): 6795—6823. https://doi.org/10.1039/c8cs00387d

13. Xia E, Wang H., Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 2014; 5(1): 4458. https://doi.org/10.1038/ncomms5458

14. Dhanabalan S.C., Ponraj J.S., Guo Z., Li S., Bao Q., Zhang H. Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci., 2017; 4(16): 1600305. https://doi.org/10.1002/advs.201600305

15. Fu Y., Wei Q., Zhang G., Sun S. Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives Adv. Energy Mater., 2018; 8(13): 1702849—1702867. https://doi.org/10.1002/aenm.201702849

16. Chen P., Li N., Chen X., Ong W.J., Zhao X. The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater., 2017; 5(1): 014002. https://doi.org/10.1088/2053-1583/aa8d37

17. Khandelwal A., Mani K., Karigerasi M.H., Lahiri I. Phosphorene — the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng. B, 2017; 221: 17—34. https://doi.org/10.1016/j.mseb.2017.03.011

18. Pumera M. Phosphorene and black phosphorus for sensing and biosensing. Trends Anal. Chem., 2017; 93: 1—6. https://doi.org/10.1016/j.trac.2017.05.002

19. Lei W., Liu G., Zhang J., Liu M. Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev., 2017; 46(12): 3492—3509. https://doi.org/10.1039/c7cs00021a

20. Zhang Y., Wang J., Liu Q., Gu Sh., Sun Zh., Chu P.K., Yu X. The electrical, thermal, and thermoelectric properties of black phosphorus. APL Materials, 2020; 8(12): 120903. https://doi.org/10.1063/5.0027244

21. Keyes R.W. The electrical properties of black phosphorus. Phys. Rev., 1953; 92: 580—584. https://doi.org/10.1103/physrev.92.580

22. Warschauer D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys., 1963; 34(7): 1853—1860. https://doi.org/10.1063/1.1729699

23. Maruyama Y., Suzuki S., Kobayashi K., Tanuma S. Synthesis and some properties of black phosphorus single crystals. Physica B+C, 1981; 105(1–3): 99—102. https://doi.org/10.1016/0378-4363(81)90223-0

24. Akahama Y., Endo S., Narita S. Electrical properties of black phosphorus single cry. J. Phys. Soc. Jpn., 1983; 52(6): 2148—2155. https://doi.org/10.1143/jpsj.52.2148

25. Asahina H., Shindo K., Morita A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn., 1982; 51: 1193—1199. https://doi.org/10.1143/jpsj.51.1193

26. Machida Y., Subedi A., Akiba K., Miyake A., Tokunaga M., Akahama Y., Izawa K., Behnia K. Observation of Poiseuille flow of phonons in black phosphorus. Sci. Adv., 2018; 4(6). https://doi.org/10.1126/sciadv.aat3374

27. Zeng Q., Sun B., Du K., Zhao W., Yu P., Zhu C., Xia J., Chen Y., Cao X., Yan Q., Shen Z., Yu T., Long Y., Koh Y.K., Liu Z. Highly anisotropic thermoelectric properties of black phosphorus crystals. 2D Mater., 2019; 6(4): 045009. https://doi.org/10.1088/2053-1583/ab2816

28. Rodrigues E.F.S., Gainza J., Serrano-Sanchez F., Lopez C., Dura O.J., Nemes N., Martinez J.L., Huttel Y., Fauth F., Fernandez-Diaz M.T., Biškup N., Alonso J.A. Structural features, anisotropic thermal expansion, and thermoelectric performance in bulk black phosphorus synthesized under high pressure. Inorg. Chem., 2020; 59(20): 14932—14943. https://doi.org/10.1021/acs.inorgchem.0c01573

29. Fei R.; Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett., 2014; 14(5): 2884–2889. https://doi.org/10.1021/nl500935z

30. Qiao J., Kong X., Hu Z.-X., Yang F., Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 2014; 5(1): 4475. https://doi.org/10.1038/ncomms5475

31. Zeng Q., Sun B., Du K., Zhao W., Yu P., Zhu Ch., Xia J., Chen Y., Cao X., Yan Q., Shen Z., Yu Ti., Long Y, Koh Y.K., Liu Zh. Highly anisotropic thermoelectric properties of black phosphorus crystals. 2D Mater., 2019; 6(4): 045009. https://doi.org/10.1088/2053-1583/ab2816

32. Morita A. Semiconducting black phosphorus. Appl. Phys. A. Solids and Surfaces, 1986; 39(4): 227—242. https://doi.org/10.1007/bf00617267

33. Shirotani I., Maniwa R., Sato H., Fukizawa A., Sato N., Maruyama Y., Kajiwara T., Inokuchi H., Akimoto S. Preparation, growth of large single-crystals, and physicochemical properties of black phosphorus at high-pressures and temperatures. Nippon Kagaku Kaishi, 1981; 10: 1604—1609. (In Jpn.). https://doi.org/10.1246/nikkashi.1981.1604

34. Tao J., Shen W., Wu S., Liu L., Feng Z., Wang C., Hu C., Yao P., Zhang H., Pang W., Duan X., Liu J., Zhou C., Zhang D. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano, 2015; 9(11): 11362—11370. https://doi.org/10.1021/acsnano.5b05151

35. Hou Z., Yang B., Wang Y., Ding B., Zhang X., Yao Y., Liu E., Xi X., Wu G., Zeng Z., Liu Z., Wang W. Large and anisotropic linear magnetoresistance in single crystals of black phosphorus arising from mobility fluctuations. Sci. Rep., 2016; 6: 1—7. https://doi.org/10.1038/srep23807

36. Strutz T., Miura L.N., Akahama Y. Magnetotransport invеstigation on black phosphorus at low Temperatures. Phys. B. Condensed Matter, 1994; 394–396(1–2): 1185—1186. https://doi.org/10.1016/0921-4526(94)90922-9

37. Kohler M. Zur magnetischen Widerstandsänderung reiner Metalle. Annalen der Physik. 1938; 424(1–2): 211—218. (In Ger.). https://doi.org/10.1002/andp.19384240124

38. Jiang X.H., Xiong F., Zhang X.W., Hua Z.H., Wang Z.H., Yang S.G. Large Magnetoresistance and hall effect in paramagnetic black phosphorus synthesized from red phosphorus. J. Phys. D: Appl. Phys., 2018; 51(9): 195101. https://doi.org/10.1088/1361-6463/aab6fa

39. Akiba K., Miyake A., Akahama Y., Matsubayashi K., Uwatoko Y., Tokunaga M. Two-carrier analyses of the transport properties of black phosphorus under pressure. Phys. Rev. В, 2017; 95: 115126. https://doi.org/10.1103/physrevb.95.115126

40. Endo S., Akahama Y., Terada S., Narita S. Growth of large single crystals of black phosphorus under high pressure. Jpn. J. Appl. Phys., 1982; 21(8): L482—L484. https://doi.org/10.1143/jjap.21.l482

41. Keyes R. The electrical properties of black phosphorus. Phys. Rev., 1988; 92: 580—584. https://doi.org/10.1103/physrev.92.580

42. Fedotov A.K., Kharchanka A., Fedotova J., Slabuhо V., Bushinski M., Svito I. Electric properties of black phosphorus single crystals. In: IX Intern. Sci. Conf.: Actual Problems of Solid State Physics. Minsk: Publisher A.Varaksin, 2021; 2: 47—51. http://apssp2021.site/files/APSSP-2021_Proceedings_Book_21.pdf

43. Pippard A.B. Magnetoresistance in metals. Cambridge; London: Cambridge University Press; 1989. 253 p.

44. Altshuler B.L., Aronov A.G., Khmelnitsky D.E. Effects of electron-electron collisions with small energy transfers on quantum localization. J. Phys. C: Solid State Phys., 1982; 15(36): 7367. https://doi.org/10.1088/0022-3719/15/36/018

45. Du Y., Neal A.T., Zhou H., Peide D.Y. Weak localization in few-layer black phosphorus. 2D Materials, 2016; 3(2): 024003. https://doi.org/10.1088/2053-1583/3/2/024003

46. Parish M.M., Littlewood P.B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature, 2003; 426(6963): 162—165. https://doi.org/10.1038/nature02073

47. Zhang Y.W., Ning H.L., Li Y.N., Liu Y.Z., Wang J. Negative to positive crossover of the magnetoresistance in layered WS2. Appl. Phys. Lett., 2016; 108(15): 153114. https://doi.org/10.1063/1.4946859

48. Banerjee S., Pati S.K. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers. Physical Chemistry Chemical Physics, 2016; 18(24): 16345–16352. https://doi.org/10.1039/c6cp02129h

49. Shik A.Y., Electronic properties of inhomogeneous semiconductors. Electrocomponent Science Monographs. CRC Press, 1995. 151 p.

50. Shklovskii B.I., Efros A.L. Electronic properties of doped semiconductors. In: Springer Series in Solid-State Sciences. Berlin; Heidelberg: Springer-Verlag, 1984, 400 p. https://doi.org/10.1007/978-3-662-02403-4

51. Kuchis E.V. Methods for studying the Hall effect. Moscow: Radio i svyaz, 1990, 264 p. (In Russ.)

52. Ashcroft N.W., Mermin N.D. Solid state physics. New York: Saunders College Publishing, 1976.

53. Asahina H., Shindo K., Morita A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys Soc. Jpn., 1982; 51: 1193—1199. https://doi.org/10.1143/jpsj.51.1193

54. Pudalov V.M. Metallic conduction, apparent metal-insulator transition and related phenomena in two-dimensional electron liquid. In: Proceedings of the International School of Physics “Enrico Fermi”. 2004; 157: 335—356.

55. Altshuler B.L., Aronov A.G., Khmelnitsky L.E. Negative magnetoresistance in semiconductors in the hopping conduction region. JETP Letters, 1982; 36(5): 157—160. (In Russ.)


Review

For citations:


Kharchenko A.A., Fedotova J.A., Slabukho V.Yu., Fedotov A.K., Pashkevich A.V., Svito I.A., Bushinsky M.V. Electrical and galvanomagnetic properties of black phosphorus single crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(1):5-22. (In Russ.) https://doi.org/10.17073/1609-3577-2022-1-5-22

Views: 503


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)