Application of X-ray diffraction and reflectometry methods for analysis of damaged layers on polar faces of ZnO after surface chemical-mechanical treatment
https://doi.org/10.17073/1609-3577-2022-1-92-102
Abstract
ZnO single crystals are used for the fabrication of laser targets for high-energy electron irradiated UV laser cathode-ray tubes and homoepitaxial substrates for lasers. The technology of ZnO based UV LEDs imposes strict requirements to surface quality. Chemical-mechanical polishing delivers good surface quality but it is known that polishing of ZnO polar faces may yield different results. Surface-sensitive high-resolution X-ray diffraction (HRXRD) and X-ray reflectometry (XRR) methods have been used for studying the structure of (0001) and (000–1) polar faces of ZnO after chemical-mechanical polishing. Two double-sided polished (0001) ZnO substrates have been cut out from different hydrothermally grown ingots. The damage and density depth profiles for the Zn and O faces of the specimens have been retrieved from the X-ray diffraction curves and the specular reflection curves, respectively. Intensity distributions in the vicinity of the (0002) and (0000) reciprocal lattice points have been taken on a D8 Discover X-ray diffractometer (Bruker-AXS, Germany) in a triple-axis setup. For separating the coherent and incoherent scattering components, the intensity profiles have been analyzed along sections perpendicular to the diffraction vector and located at different distances from the reciprocal lattice sites. The HRXRD and XRR data have been compared with atomic force microscopy (AFM) data. The HRXRD method has revealed damaged layers at both faces of the specimens, with the layer thicknesses differing for the Zn and O faces, i.e., 5–7 nm for the Zn face and 10–11 nm for the O face. The XRR method has shown that both faces are sufficiently smooth. These results have been confirmed by AFM (RMS roughness ~ 0.23 ± 0.07 nm). However, the concentration of electrons in the superficial layers has been found to change. The layer thickness proves to be greater for the O face. We have hypothesized that the phenomena observed are caused by the difference in the chemical interaction of the Zn and O faces with the polishing agents.
About the Authors
K. D. ShcherbachevGermany
6 Felsenweg, Schnaittach-Hormersdorf 91222
4-1 Leninsky Ave., Moscow 119049
Kirill D. Shcherbachev — Researcher (1), Leading Engineer (2)
M. I. Voronova
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Marina I. Voronova — Leading Engineer,
References
1. Minami T. Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology. 2005; 20(4): S35. https://doi.org/10.1088/0268-1242/20/4/004
2. Bhosle V., Prater J.T., Yang F., Burk D., Forrest S.R., Narayan J. Gallium-doped zinc oxide films as transparent electrodes for organic solar cell applications. Journal of Applied Physics. 2007; 102(2): 023501—023501-5. https://doi.org/10.1063/1.2750410
3. Owen J., Son M.S., Yoo K.-H., Ahn B.D., Lee S.Y. Organic photovoltaic devices with Ga-doped ZnO electrode. Applied Physics Letters. 2007; 90(3): 033512. https://doi.org/10.1063/1.2432951
4. Kim Y.H., Kim J.S., Kim W.M., Seong T.-Y., Lee J., Müller-Meskamp L., Leo K. Realizing the potential of ZnO with alternative non-metallic co-dopants as electrode materials for small molecule optoelectronic devices. Advanced Functional Materials. 2013; 23(29): 3645—3652. https://doi.org/10.1002/adfm.201202799
5. Farafonov S.B. Chemical-mechanical polishing of ZnO, NiSb, Cu single crystals and cylindrical Si substrates. Diss. Cand. Sci. (Eng.). Moscow: NUST MISiS; 2011. 213 p. (In Russ.)
6. Kuzmina I.P., Nikitenko V.A. Zinc oxide. Preparation and optical properties. Moscow: Nauka; 1984. 166 p. (In Russ.)
7. Artemov A.S., Gorbatenko L.S., Novodvorsky O.A., Sokolov V.I., Farafonov S.B., Khramova O.D. Preparation of ZnO and a-Al2O3 substrates for creating UV lasers. Nanotechnology. 2007; 4(12): 46—50. (In Russ.)
8. Shcherbachev K.D., Bublik V.T., Mordkovich V.N., Pazhin D.M. The influence of photoexcitation in situ on a generation of defect structure during ion implantation into Si substrates. Journal of Physics D: Applied Physics. 2005; 38(10А): A126. https://doi.org/10.1088/0022-3727/38/10a/024
9. Shalimov A., Shcherbachev K.D., Bak-Misiuk J., Misiuk A. Defect structure of silicon crystals implanted with H2+ ions. Physica Status Solidi A: Applications and Materials. 2007; 204(8): 2638—2644. https://doi.org/10.1002/pssa.200675697
10. Bowen D.K., Tanner B.K. X-ray metrology in semiconductor manufacturing. Boca Raton: CRC Press; 2006. 279 p. https://doi.org/10.1201/9781315222035
11. Holy V., Baumbach T. Non-specular X-ray reflection from rough multilayers. Physical Review B. 1994; 49(15): 10668—10676. https://doi.org/10.1103/physrevb.49.10668
12. ISO 16413:2020. Evaluation of thickness, density and interface width of thin films by X-ray reflectometry – Instrumental requirements, alignment and positioning, data collection, data analysis and reporting. Publ. 08.2020. https://www.iso.org/standard/76403.html
13. Croce R., Névot L. Étude des couches minces et des surfaces par réflexion rasante, spéculaire ou diffuse, de rayons X. Revue de Physique Appliquée (Paris). 1976; 11(1): 113—125. https://doi.org/10.1051/rphysap:01976001101011300
14. Artioukov I.A., Asadchikov V.E., Kozhevnikov I.V. Effects of a near-surface transition layer on X-ray reflection and scattering. Journal of X-Ray Science and Technology. 1996; 6(3): 223—243. https://doi.org/10.3233/xst-1996-6301
15. Croce R., Névot L., Pardo B. Contribution a l’étude des couches minces par réflexion spéculaire de rayons X. Nouvelle Revue d’Optique Appliquée. 1972; 3(1): 37—50. https://doi.org/10.1088/0029-4780/3/1/307
16. Underwood J.H., Barbee T.W. Layered synthetic microstructures as Bragg diffractors for X-rays and extreme ultraviolet: theory and predicted performance. Applied Optics.1981; 20(17): 3027—3034. https://doi.org/10.1364/ao.20.003027
17. Benediktovitch A., Feranchuk I., Ulyanenkov A. Theoretical concepts of X-ray nanoscale analysis. Theory and applications. Springer; 2014. 318 p. https://doi.org/10.1007/978-3-642-38177-5
18. Stoev K., Sakurai K. Recent theoretical models in grazing incidence X-ray reflectometry. The Rigaku Journal. 1997; 14(2): 22—37.
19. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes in C. NY: Cambridge University Press; 1996. 994 p.
20. Afanas’ev A.M., Chuev M.A., Imamov R.M., Lomov A.A., Mokerov V.G., Federov Yu.V., Guk A.V. Study of multilayer GaAs-InxGa1-xAs/GaAs layer-based structure by double-crystal X-ray diffractometry. Crystallography Reports. 1997; 42(3): 467—476.
21. Wormington M., Panaccione C., Matney K.M., Bowen D.K. Characterization of structures from X-ray scattering data using genetic algorithms. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 1999; 357: 2827. https://doi.org/10.1098/rsta.1999.0469
22. Afanasyev A.M., Alexandrov P.A., Imamov R.M. X-ray diffraction diagnostics of submicron layers. Moscow: Nauka; 1989. 152 p. (In Russ.)
Review
For citations:
Shcherbachev K.D., Voronova M.I. Application of X-ray diffraction and reflectometry methods for analysis of damaged layers on polar faces of ZnO after surface chemical-mechanical treatment. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(1):92-102. (In Russ.) https://doi.org/10.17073/1609-3577-2022-1-92-102