Evaluation of the effect of FinFET structure parameters on electrical characteristics using TCAD modeling tools
https://doi.org/10.17073/1609-3577-2021-4-222-228
Abstract
Using TCAD modeling, the effect of changing FinFET structure parameters, such as gate stack layer sizes, rib shape, or doping levels, on the electrical characteristics of the device is investigated.
About the Authors
K. O. PetrosyantsRussian Federation
34 Tallinskaya Str., Moscow 123458;
3 Sovetskaya Str., Zelenograd, Moscow 124365
Konstantin O. Petrosyants — Dr. Sci. (Eng.), Professor, Professor-Researcher,
D. S. Silkin
Russian Federation
34 Tallinskaya Str., Moscow 123458
Denis S. Silkin — Cand. Sci. (Eng.), Researcher
D. A. Popov
Russian Federation
34 Tallinskaya Str., Moscow 123458
Dmitriy A. Popov — Cand. Sci. (Eng.), Associate Professor
References
1. Sicard E. Introducing 7-nm FinFET technology in Microwind. https://hal.archives-ouvertes.fr/hal-01558775/document
2. Mohammed M.U., Nizam A, Chowdhury M.H. Performance stability analysis of SRAM cells based on different FinFET devices in 7nm technology. 2018 IEEE SOI–3D–Subthreshold Microelectronics Technology Unified Conference (S3S). Burlingame: IEEE; 2018: 1—3. https://doi.org/10.1109/S3S.2018.8640161
3. Sicard E. Introducing 14-nm FinFET technology in Microwind June, 2017. https://hal.archives-ouvertes.fr/hal-01541171/document
4. Petrosyants K.O., Silkin D.S., Popov D.A., Li Bo, Zhang Xu. TCAD modeling of nanoscale bulk FinFET structures with account of radiation exposure. Proceedings of Universities. Electronics. 2021; 26(5): 374—386. (In Russ.). https://doi.org/10.24151/1561-5405-2021-26-5-374-386
5. Gaynor B.D., Hassoun S. Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design. IEEE Transactions on Electron Devices. 2014; 61(8): 2738—2744. https://doi.org/10.1109/TED.2014.2331190
6. Baravelli E., Marchi L., Speciale N. Fin shape fluctuations in FinFET: Correlation to electrical variability and impact on 6-T SRAM noise margins. Solid-State Electronics. 2009; 53(12): 1303—1312. https://doi.org/10.1016/j.sse.2009.09.015
7. Kawasaki H., Basker V.S., Yamashita T., Lin C.-H., Zhu Y., Faltermeier J., Schmitz S., Cummings J., Kanakasabapathy S., Adhikari H., Jagannathan H., Kumar A., Maitra K., Wang J., Yeh C.-C., Wang C., Khater M., Guillorn M., Fuller N., Chang J., Chang L., Muralidhar R., Yagishita A., Miller R., Ouyang Q., Zhang Y., Paruchuri V.K., Bu H., Doris B., Takayanagi M., Haensch W., McHerron D., O’Neill J., Ishimaru K. Challenges and solutions of FinFET integration in an SRAM cell and a logic circuit for 22 nm node and beyond. 2009 IEEE International Electron Devices Meeting (IEDM). Baltimore: IEEE; 2009: 1—4. https://doi.org/10.1109/IEDM.2009.5424366
8. Liu Y., Masahara M., Ishii K., Sekigawa T., Takashima H., Yamauchi H., Suzuki E. A highly threshold Voltage-controllable 4T FinFET with an 8.5-nm-thick Si-fin channel. IEEE Electron Device Letters. 2004; 25(7): 510—512. https://doi.org/10.1109/LED.2004.831205
9. Magnone P., Mercha A., Subramanian V., Parvais P., Collaert N., Dehan M., Decoutere S., Groeseneken G., Benson J., Merelle T., Lander R.J.P., Crupi F., Pace C. Matching performance of FinFET devices with fin widths down to 10 nm. IEEE Electron Device Letters. 2009; 30(12): 1374—1376. https://doi.org/10.1109/LED.2009.2034117
10. Guillorn M., Chang J., Bryant A., Fuller N., Dokumaci O., Wang X., Newbury J., Babich K., Ott J., Haran B., Yu R., Lavoie C., Klaus D., Zhang Y., Sikorski E., Graham W., To B., Lofaro M., Tornello J., Koli D., Yang B., Pyzyna A., Neumeyer D., Khater M., Yagishita A., Kawasaki H., Haensch W. FinFET performance advantage at 22nm: An AC perspective. 2008 Symposium on VLSI Technology. Honolulu, USA: IEEE; 2008: 12—13. https://doi.org/10.1109/VLSIT.2008.4588544
11. Wu X., Chan P.C.H., Chan M. Impacts of nonrectangular fin cross section on the electrical characteristics of FinFET. IEEE Transactions on Electron Devices. 2005; 52(1): 63—68. https://doi.org/10.1109/TED.2004.841334
12. Li K.-S., Chen P.-G., Lai T.-Y., Lin C.-H., Cheng C.-C., Chen C.-C., Wei Y.-J., Hou Y.-F., Liao M.-H., Lee M.-H., Chen M.-C., Sheih J.-M., Yeh W.-K., Yang F.-L., Salahuddin S., Hu C. Sub-60mV-swing negative-capacitance FinFET without hysteresis. 2015 IEEE International Electron Devices Meeting (IEDM). Washington, USA; 2015: 22.6.1—22.6.4. https://doi.org/10.1109/IEDM.2015.7409760
13. Fried D.M., Duster J.S., Kornegay K.T. Improved independent Gate N-type FinFET fabrication and characterization. IEEE Electron Device Letters. 2003; 24(9): 592—594. https://doi.org/10.1109/LED.2003.815946
14. Lin C.-H., Kambhampati R., Miller R.J., Hook T.B., Bryant A., Haensch W., Oldiges P., Lauer I., Yamashita T., Basker V., Standaert T., Rim K., Leobandung E., Bu H., Khare M. Channel doping impact on FinFETs for 22nm and beyond. 2012 Symposium on VLSI Technology (VLSIT). Honolulu, USA: IEEE; 2012: 15—16. https://doi.org/10.1109/VLSIT.2012.6242438
15. Li B., Huang Y.-B., Yang L., Zhang Q.-Z., Zheng Z.-S., Li B.-H., Zhu H.-P., Bu J.-H., Yin H.-X., Luo J.-J., Han Z.-S., Wang H.-B. Process variation dependence of total ionizing dose effects in bulk nFinFETs. Microelectronics Reliability. 2018; 88–90: 946—951. https://doi.org/10.1016/j.microrel.2018.07.020
Review
For citations:
Petrosyants K.O., Silkin D.S., Popov D.A. Evaluation of the effect of FinFET structure parameters on electrical characteristics using TCAD modeling tools. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021;24(4):222-228. (In Russ.) https://doi.org/10.17073/1609-3577-2021-4-222-228