Methods of dislocation structure characterization in AIIIBV semiconductor single crystals
https://doi.org/10.17073/1609-3577-2022-4-323-336
EDN: TEZNPS
Abstract
The development pace of advanced electronics raises the demand for semiconductor single crystals and strengthens the requirements to their structural perfection. Dislocation density and distribution pattern are most important parameters of semiconductor single crystals which determine their performance as integrated circuit components. Therefore studies of the mechanisms of dislocation nucleation, slip and distribution are among the most important tasks which make researchers face the choice of suitable analytical methods. This work is an overview of advanced methods of studying and evaluating dislocation density in single crystals. Brief insight has been given on the main advantages and drawbacks of the methods overviewed and experimental data have been presented. The selective etching method (optical light microscopy) has become the most widely used one and in its conventional setup is quite efficient in the identification of scrap defects and in dislocation density evaluation by number of etch pits per vision area. Since the introduction of digital light microscopy and the related transfer from image analysis to pixel intensity matrices and measurement automation, it has become possible to implement quantitative characterization for the entire cross-section of single crystal wafers and analyze structural imperfection distribution pattern. X-ray diffraction is conventionally used for determination of crystallographic orientation but it also allows evaluating dislocation density by rocking curve broadening in double-crystal setup. Secondary electron scanning electron microscopy and atomic force microscopy allow differentiating etch patterns by origin and studying their geometry in detail. Transmission electron microscopy and induced current method allow obtaining micrographs of discrete dislocations but require labor-consuming preparation of experimental specimens. X-ray topography allows measuring bulky samples and also has high resolution but is hardly suitable for industry-wide application due to the high power consumption of measurements.
Digital image processing broadens the applicability range of basic dislocation structure analytical methods in materials science and increases the authenticity of experimental results.
About the Authors
S. N. KnyazevRussian Federation
2-1 Elektrodnaya Str., Moscow 111524
Stanislav N. Knyazev — Cand. Sci. (Eng.), Head of the Laboratory of High-Temperature Semiconductor Compounds АIIIВV
A. V. Kudrya
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Aleksandr V. Kudrya — Dr. Sci. (Eng.), Professor, Deputy Head of the Department of Metal Science and Physics of Strength
N. Yu. Komarovskiy
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524;
4-1 Leninsky Ave., Moscow 119049
Nikita Yu. Komarovskiy — Postgraduate Student, Trainee Researcher
Yu. N. Parkhomenko
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
Yuri N. Parkhomenko — Dr. Sci. (Phys.-Math.), Professor, Scientific Consultant
E. V. Molodtsova
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
Elena V. Molodtsova — Cand. Sci. (Eng.), Leading Researcher
V. V. Yushchuk
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
Vyacheslav V. Yushchuk — Postgraduate Student, Trainee Researcher
References
1. Gorelik S.S., Dashevsky M.Y. Materialovedenie poluprovodnikov i dielektrikov. Moscow: Metallurgy, 1988. 495 с.
2. Milvidskii M.G., Oswenskii V.B. Structural defects in monocrystals of semiconductors. Moscow: Metallurgy, 1984. 240 с.
3. Berezhansky I.R., Adarchin S. A., Kosushkin V. G. The influence of dislocations on parametric properties of semiconductor devices // Electromagnetic waves and electronic systems. - 2016. - Т. 21. - №. 10. - С. 4-8.
4. Bardsley W. The Influence of Dislocations on Electrical Properties of Semiconductors // Proc. of Physical Sciences. - 1961. - Т. 73. - №. 1. - С. 121-167.
5. S.N. Gorin Etching of semiconductors. - 1st ed. - M.: MIR, 1965. - 382 с.
6. Levchenko D. S., Teplova T. B., Ugova T. G. Study of dislocation structure of gallium arsenide monocrystals used to create ultrafast microelectronic devices // Economics and Practical Management in Russia and Abroad. - 2015. - С. 135-137.
7. Parfent'eva I.B., Pugachev B.V., Pavlov V.F., Kozlova Yu.P., Knyazev S.N., Ugova T.G. Features of dislocation structure formation in gallium arsenide monocrystals obtained by Czochralski method // Crystallography. - 2017. - Т. 62. - №. 2. - С. 259-263.
8. Sluchinskaya I. A. Fundamentals of Materials Science and Technology of Semiconductors // Moscow. - 2002. - Т. 376.]
9. Fanstein S. M. Surface treatment of semiconductor devices //M.: Energia. - 1966
10. Markov A. V., Milvidsky M. G., Oswensky V. B. On the role of dislocations in forming the properties of GaAs semiconductor monocrystals //Physics and Technique of Semiconductors. - 1986. - Т. 20. - №. 4. - С. 634-640.
11. Milvidsky M.G., Oswensky V. B. Structural defects in epitaxial layers of semiconductors. - Metallurgy, 1985.
12. Avrov D.D., Lebedev A.O., Tairov Yu.M. Main defects in ingots and epitaxial layers of silicon carbide. I. Dislocation structure and morphological defects. Review // Izvestia of higher educational institutions. Electronics. - 2015. - Т. 20. - №. 3. - С. 225-238
13. Kosushkin V. G., Kozhitov L. V., Kozhitov S. L. State and problems of growing of monocrystals of semiconductors of high homogeneity (in Russian) // Izvestia of South-West State University. Series: Technique and Technology. - 2013. - №. 1. - С. 10-22.
14. Kudrya AV, Sokolovskaya EA, Skorodumov SV, Trachenko VA, Papina KB Possibilities of digital light microscopy for objective assessment of the quality of metal products // Metal Science and Heat Treatment of Metals. - 2018. - №. 4. - С. 15-23.
15. Sokolovskaya E. A., Kudrya A.V., Perezhogin V.Y., Tang V.F., Kodirov D.F.U., Sergeev M.I. Founders: Metallurgizdat // Metallurg. - №. 7. - С. 48-57.
16. Bykov Y. A., Karpukhin S. D., Boichenko M. K. Raster electron microscopy and X-ray spectral analysis //Apparatus, principle of operation, application/YA Bykov, SD Karpukhin, MK Boichenko et al. Electron data. Moscow: Bauman Moscow State Technical University. - 2003.
17. Govorkov A. V., Polyakov A.Y., Ugova T.G., Smirnov N.B., Petrov E.A., Mezeny M.V., Markov A.V., Lee I.-H., Pirton S.J. Dislocation Identification and Influence on Recombination Process of Current Carriers in Gallium Nitride //Surface. X-ray, Synchrotron and Neutron Surveys. - 2007. - №. 7. - С. 18-24.
18. Kravchuk K. S., Mezhenyi M. V., Ugova T. G. Determination of dislocation types and their density in GaN epitaxial layers of different thickness by optical and atomic force microscopy methods // Crystallography. - 2012. - Т. 57. - №. 2. - С. 325-325.
19. Suslov A.A., Chizhik S.A. Scanning probe microscopes (review) // Materials, Technologies, Instruments - T.2 (1997), ¹ 3, P. 78-89
20. Komarovsky N.Y. et al. Studying of gradient distribution of defects in monocrystalline silicon and gallium arsenide wafers by means of X-ray topography // Int. - 2021. - №. 4-1 (106). - С. 26-31.
21. G.Yu. Orlova, I.I. Kalashnikova. Study of morphology and phase composition of highly concentrated and mixed crystals for active laser media. // XLVI1 Scientific Conference "Modern Problems of Fundamental and Applied Sciences". 26 ¬ 27 November 2004ã. Proceedings of the conference. Part V. Moscow ¬ Dolgoprudny.: MIPT. 2004. с. 65
22. Gorelik S.S., Rastorguev L.N., Skakov Yu. X-ray and electronographic analysis. M/Metallurgy. - 2002.
23. A. M. Samoilov, S. V. Belenko, B. A. Siradze, A. S. Toreev, A. I. Dontsov, I. V. Filonova Dislocation density in PbTe films grown on Si (100) and BaF2 (100) substrates by the modified "hot wall" method // Kondensirovannye sredy i mezhfaznye granitsy Condensed Matter and Interphases. - 2013. - Т. 15. - №. 3. - С. 322-331.
24. B.K. Tanner and M.A.Phil. X-ray Diffraction Topography Pergamon Press,Nev-Jork,1966,p.763.
25. Umansky Y.S., X-ray diffraction of metals, Moscow, Metallurgy,1967, p.236.
26. A.Authier, Contrast of Dislocation images in X-ray Transmission Topography,Adv. X-ray Analysts,10,9-31,1967.
27. Diffraction and Microscopic Methods in Material Science, edited by S.Amelinx, Moscow, Metallurgy,1984
28. Baruchel J., Hartwig J. J.Synchrotron Rad. (2002), 9, 107
29. Kniazev S.N., Komarovsky N.Yu., Chuprakov V.A., Yushchuk V.V. Effect of Technological Parameters on Structural Perfection of Monocrystalline Gallium Arsenide // Modern Materials and Advanced Manufacturing Technologies (SMPT-2021). - 2021. - С. 218-220.
30. Williams D. B., Carter C. B. The transmission electron microscope //Transmission electron microscopy. - Springer, Boston, MA, 1996. - С. 3-17.
31. Petlitsky A. N., Zhigulin D. V., Lanin V. L. Express control of elements of integrated circuits using scanning electron microscopy and induced current mode //Production of electronics. - 2020. - №. 1. - С. 98-102.
32. Milvidskii M. G., Oswenskii V. B. Structural defects in epitaxial layers of semiconductors. - Metallurgy, 1985.
33. Belnik S.A., Vergeles P.S., Schmidt N.M., Yakimov E.B. Defects with light contrast induced current mode in GaN-based light-emitting structures. // Surface. X-ray, synchrotron and neutron investigations. - 2007. - VOL. 7. - P. 34-37.
34. Computer vision [Electronic resource] / L. Shapiro, J. Stockman; transl. from English: BINOM. Laboratory of Knowledge, 2013. - 752 с
35. Samoilov A. N., Shevchenko I. V. Development of methods of isolation of binarized fragments of semiconductor wafer etching pits //Technological Audit and Production Reserves. - 2016. - Т. 3. - №. 1 (29). - С. 60-68.
36. Samoilov A. N., Shevchenko I. V. Approaches to identification of dislocation contour fragments on the plate of monocrystal semiconductor. - 2019.
37.
Supplementary files
Review
For citations:
Knyazev S.N., Kudrya A.V., Komarovskiy N.Yu., Parkhomenko Yu.N., Molodtsova E.V., Yushchuk V.V. Methods of dislocation structure characterization in AIIIBV semiconductor single crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(4):323-336. (In Russ.) https://doi.org/10.17073/1609-3577-2022-4-323-336. EDN: TEZNPS