Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Nature of the abnormally high photocurrent relaxation time in the a-Ga2O3-based Schottky diodes

https://doi.org/10.17073/1609-3577-2023-2-137-147

EDN: BSJNQA

Abstract

Ga2O3 is an ultra-wideband material with excellent optical characteristics. It is a promising material for power applications and optoelectronics because of its high electrical breakdown voltage and radiation hardness. It is optically transparent for visible light and UVA but UVC-sensitive. One of the main disadvantages of this material is the anomalous slow photoeffect: photoconductivity rise and decay characteristic times can be more than hundreds of seconds long. This "slow" photoconductivity effect severely limits the utilisation of the Ga2O3-based devices. The aim of this work is the investigation of the nature of this effect. The results of the photoinduced current rise and decay under 530 nm and 259 nm LED are measured in the HVPE-grown α-Ga2O3-based Schottky diode. Upon UV-illumination the photocurrent rise consists of three parallel processes: fast signal growth, slow growth and very slow decay with characteristic times near 70 ms, 40 s and 300 s respectively. Subsequent 530 nm LED illumination resulted in photoinduced current rise consisting of two mechanisms with characterisatic times 130 ms and 40 s on which a very slow decrease of the photocurrent amplitude with characteristic time of 1500 s was superimposed. 530 nm illumination stimulates this process. Protoinduced current relaxation analysis shows the presence of the deep levels with energies (EC - 0.17 eV). It is suggested that extremely slow relaxations can be associated with potential fluctuations near the Schottky barrier.

About the Authors

I. V. Schemerov
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Ivan V. Schemerov — Cand. Sci. (Eng.), Associate Professor



A. Yu. Polyakov
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Alexander Yu. Polyakov — Cand. Sci. (Eng.), Professor



A. V. Almaev
Tomsk State University
Russian Federation

36 Lenin Ave., Tomsk 634050

Aleksey V. Almaev — Cand. Sci. (Eng.), Associate Professor



V. I. Nikolaev
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
Russian Federation

26 Politehnicheskaya Str., St. Petersburg 194021

Vladimir I. Nikolaev — Dr. Sci. (Phys.-Math.), Head of Department



S. P. Kobeleva
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Svetlata P. Kobeleva — Cand. Sci. (Phys.-Math.), Associate Professor



A. A. Vasilyev
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Anton A. Vasilyev — Postgraduate Student



V. D. Kirilov
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Viktor D. Kirilov — Postgraduate Student



A. I. Kochkova
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Anastasia I. Kochkova — Engineer



V. V. Kopiev
Tomsk State University
Russian Federation

36 Lenin Ave., Tomsk 634050

Viktor V. Kopiev — Engineer



Yu. O. Kulanchikov
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Yuri O. Kulanchikov — Postgraduate Student



References

1. Pearton S.J., Yang J., Cary P.H., Ren F., Kim J., Tadjer M.J., Mastro M.A. A review of Ga2O3materials, processing, and devices. Applied Physics Reviews. 2018; 5: 011301. https://doi.org/10.1063/1.5006941

2. Pearton S.J., Ren F., Tadjer M., Kim J. Perspective: Ga2O3for ultra-high power rectifiers and MOSFETS. Journal of Applied Physics. 2018; 124: 220901. https://doi.org/10.1063/1.5062841

3. Zhang J., Shi J., Qi D.-C., Chen L, Zhang K.H.L. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Materials. 2020; 8(2): 020906. https://doi.org/10.1063/1.5142999

4. Xu Yu, An Z., Zhang L., Feng Q., Zhang J., Zhang C., Hao Y. Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method. Optical Materials Express. 2018; 8(9): 2941–2947. https://doi.org/10.1364/OME.8.002941

5. Wei Y., Li X., Yang J., Liu C., Zhao J., Liu Y., Dong S. Interaction between hydrogen and gallium vacancies in β-Ga2O3. Scientific Reports. 2018; 8: 10142. https://doi.org/10.1038/s41598-018-28461-3

6. Ingebrigtsen M.E., Kuznetsov A.Yu., Svensson B.G., Alfieri G., Mihaila A., Badstübner U., Perron A., Vines L., Varley J.B. Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3. APL Materials. 2019; 7(2): 022510. https://doi.org/10.1063/1.5054826

7. Yoon Y., Kim S., Lee I.G., Cho B.J., Hwang W.S. Electrical and photocurrent properties of a polycrystalline Sn-doped β-Ga2O3 thin film. Materials Science in Semiconductor Processing. 2021; 121: 105430. https://doi.org/10.1016/j.mssp.2020.105430

8. Mcglone J.F., Xia Z., Zhang Y., Joishi C., Lodha S., Rajan S., Ringel S.A., Arehart A.R. Trapping effects in Si-doped-Ga2O3 MESFETs on an Fe-doped-Ga2O3 substrate. IEEE Electron Device Letters. 2018; 39(7): 1042—1045. https://doi.org/10.1109/LED.2018.2843344

9. Polyakov A.Y., Smirnov N.B., Shchemerov I.V., Chernykh S.V., Oh S., Pearton S.J., Ren F., Kochkova A.I., Kim J. Defect states determining dynamic trapping-detrapping in β-Ga2O3 field-effect transistors. ECS Journal of Solid State Science and Technology. 2019; 8(7): Q3013. https://doi.org/10.1149/2.0031907jss

10. Xu J., Zheng W., Huang F. Gallium oxide solar-blind ultraviolet photodetectors: A review. Journal of Materials Chemistry C. 2019; 7(29): 8753—8770. https://doi.org/10.1039/C9TC02055A

11. Yakimov E.B., Polyakov A.Y., Shchemerov I.V., Smirnov N.B., Vasilev A.A., Vergeles P.S., Yakimov E.E., Chernykh A.V., Shikoh A.S., Ren F., Pearton S.J. Photosensitivity of Ga2O3 Schottky diodes: Effects of deep acceptor traps present before and after neutron irradiation. APL Materials. 2020; 8(11): 111105. https://doi.org/10.1063/5.0030105

12. Yakimov E.B., Polyakov A.Y., Shchemerov I.V., Smirnov N.B., Vasilev A.A., Kochkova A.I., Vergeles P.S., Yakimov E.E., Chernykh A.V., Xian Minghan, Ren F., Pearton S.J. On the nature of photosensitivity gain in Ga2O3 Schottky diode detectors: Effects of hole trapping by deep acceptors. Journal of Alloys and Compounds. 2021; 879: 160394. https://doi.org/10.1016/j.jallcom.2021.160394

13. Oh S., Jung Y., Mastro M.A., Hite J.K., Eddy C.R., Kim J. Development of solar-blind photodetectors based on Si-implanted β-Ga2O3. Optics Express. 2015; 23(22): 28300—28305. https://doi.org/10.1364/OE.23.028300

14. Meng D.D., Ji X.Q., Wang D.F., Chen Z.W. Enhancement of responsivity in solar-blind UV detector with back-gate MOS structure fabricated on β-Ga2O3 films. Frontiers in Materials. 2021; 8: 672128. https://doi.org/10.3389/fmats.2021.672128

15. Tak B.R., Yang M.-M., Alexe M., Singh R. Deep-level traps responsible for persistent photocurrent in pulsed-laser-deposited β-Ga2O3 thin films. Crystals. 2021; 11(9): 1046. https://doi.org/10.3390/cryst11091046

16. Polyakov A.Y., Smirnov N.B., Shchemerov I.V., Pearton S.J., Ren F., Chernykh A.V., Lagov P.B., Kulevoy T.V. Hole traps and persistent photocapacitance in proton irradiated β-Ga2O3 films doped with Si. APL Materials. 2018; 6(9): 096102. https://doi.org/10.1063/1.5042646

17. Yakovlev N.N., Almaev A.V., Butenko P.N., Mikhaylov A.N., Pechnikov A.I., Stepanov S.I., Timashov R.B., Chikiryaka A.V., Nikolaev V.I. Effect of Si+ ion irradiation of α-Ga2O3 epitaxial layers on their hydrogen sensitivity. Material Physics and Mechanics. 2022; 48(3): 301—307. https://doi.org/10.18149/MPM.4832022_1

18. Dobaczewski L., Peaker A.R., Bonde N.K. Laplace-transform deep-level spectroscopy: The technique and its applications to the study of point defects in semiconductors. Journal of Applied Physics. 2004; 96(9): 4689—4728. https://doi.org/10.1063/1.1794897

19. Zheng X., Feng S., Zhang Y., Yang J. Identifying the spatial position and properties of traps in GaN HEMTs using current transient spectroscopy. Microelectronics Reliability. 2016; 63: 46—51. https://doi.org/10.1016/j.microrel.2016.05.001

20. Aoki Y., Wiemann C., Feyer V., Kim H.-S., Schneider C.M., Ill-Y.H., Martin M. Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Nature Communications. 2014; 5: 3473. https://doi.org/10.1038/ncomms4473

21. Polyakov A.Y., Smirnov N.B., Shchemerov I.V., Lee I.-H., Jang T., Dorofeev A.A., Gladysheva N.B., Kondratyev E.S., Turusova Y.A., Zinovyev R.A., Turutin A.V., Ren F., Pearton S. J. Current relaxation analysis in AlGaN/GaN high electron mobility transistors. Journal of Vacuum Science & Technology B. 2017; 35(1): 011207. https://doi.org/10.1116/1.4973973

22. Mitrofanov O., Manfra M. Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors. Superlattices and Microstructures. 2003; 34(1-2): 33—53. https://doi.org/10.1016/j.spmi.2003.12.002

23. Polyakov A., Nikolaev V., Stepanov S., Almaev A., Pechnikov A., Yakimov E., Kushnarev B.O., Shchemerov I., Scheglov M., Chernykh A., Vasilev A., Kochkova A., Pearton S.J. Electrical properties of α-Ga2O3 films grown by halide vapor phase epitaxy on sapphire with α-Cr2O3 buffers. Journal of Applied Physics. 2022; 131(21): 215701. https://doi.org/10.1063/5.0090832

24. Polyakov A.Y., Nikolaev V.I., Tarelkin S.A., Pechnikov A.I., Stepanov S.I., Nikolaev A.E., Shchemerov I.V., Yakimov E.B., Luparev N.V., Kuznetsov M.S., Vasilev A.A., Kochkova A.I., Voronova M.I., Scheglov M.P., Kim J., Pearton S.J. Electrical properties and deep trap spectra in Ga2O3 films grown by halide vapor phase epitaxy on p-type diamond substrates. Journal of Applied Physics. 2021; 129(18): 185701. https://doi.org/10.1063/5.0044531

25. Polyakov A.Y., Nikolaev V.I., Stepanov S.I., Pechnikov A.I., Yakimov E.B., Smirnov N.B., Shchemerov I.V., Vasilev A.A., Kochkova A.I., Chernykh A.V., Pearton S.J. Editors’ choice — electrical properties and deep traps in α-Ga2O3:Sn films grown on sapphire by halide vapor phase epitaxy. ECS Journal of Solid State Science and Technology. 2020; 9(4): 045003. https://doi.org/10.1149/2162-8777/ab89bb

26. Kim J., Pearton S.J., Fares C., Yang J., Ren F., Kim S., Polyakov A.Y. Radiation damage effects in Ga2O3 materials and devices. Journal of Materials Chemistry C. 2018; 7(1): 10—24. https://doi.org/10.1039/c8tc04193h

27. Polyakov A.Y., Nikolaev V.I., Meshkov I.N., Siemek K., Lagov P.B., Yakimov E.B., Pechnikov A.I., Orlov O.S., Sidorin A.A., Stepanov S.I., Shchemerov I.V., Vasilev A.A., Chernykh A.V., Losev A.A., Miliachenko A.D., Khrisanov I.A., Pavlov Yu.S., Kobets U.A., Pearton S.J. Point defect creation by proton and carbon irradiation of α-Ga2O3. Journal of Applied Physics. 2022; 132(3): 035701. https://www.doi.org/10.1063/5.0100359


Supplementary files

Review

For citations:


Schemerov I.V., Polyakov A.Yu., Almaev A.V., Nikolaev V.I., Kobeleva S.P., Vasilyev A.A., Kirilov V.D., Kochkova A.I., Kopiev V.V., Kulanchikov Yu.O. Nature of the abnormally high photocurrent relaxation time in the a-Ga2O3-based Schottky diodes. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(2):137-147. (In Russ.) https://doi.org/10.17073/1609-3577-2023-2-137-147. EDN: BSJNQA

Views: 486


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)