Preview

Известия высших учебных заведений. Материалы электронной техники

Расширенный поиск

Влияние технологических параметров при многопроволочной резке слитков GaAs на поверхностные характеристики пластин

https://doi.org/10.17073/1609-3577-2023-2-101-109

EDN: PMDJIV

Полный текст:

Аннотация

Механическая обработка полупроводниковых монокристаллических слитков является одним из ключевых этапов в производстве пластин GaAs. Основной вопрос для получения качественных пластин — определение оптимальных параметров механической обработки, которое заключается в выявлении зависимостей качества поверхности подложек после резки от задаваемых при этом технологическом процессе параметров. Технология получения полированных полупроводниковых пластин (подложек) у практически всех полупроводниковых материалов схожая и имеет в своем различии только ряд отличительных черт, связанных с механическими и структурными особенностями отдельных материалов. Механическая обработка является первым после роста кристалла этапом, при котором необходимо соблюдать и совершенствовать множество технологических параметров для получения качественной готовой продукции. В технологическом процессе обработки полупроводника необходимо в первую очередь разделить кристалл на пластины со схожими поверхностными характеристиками. От качества этого разделения зависит то, какие пластины получатся в конечном итоге и насколько они будут пригодны как подложки для производства приборов при массовом производстве. Исследование влияния параметров резки на структуру нарушенного слоя и основных геометрических параметров пластин позволяет выявить оптимальные параметры механической резки и диапазон отклонений, возможный для получения пластин схожего качества для дальнейшей обработки.

Об авторах

Д. А. Подгорный
Национальный исследовательский технологический университет «МИСИС»
Россия

Ленинский просп., д. 4, стр. 1, Москва, 119049

Подгорный Дмитрий Андреевич — канд. физ.-мат. наук, доцент кафедры материаловедения полупроводников и диэлектриков



М. С. Нестюркин
Национальный исследовательский технологический университет «МИСИС»; Государственный научно-исследовательский и проектный институт редкометаллической промышленности «Гиредмет»
Россия

Ленинский просп., д. 4, стр. 1, Москва, 119049;

Электродная ул., д. 2, стр. 1, Москва, 111524

Нестюркин Михаил Сергеевич — магистр (1), младший научный сотрудник (2)



Н. Ю. Комаровский
Национальный исследовательский технологический университет «МИСИС»; Государственный научно-исследовательский и проектный институт редкометаллической промышленности «Гиредмет»
Россия

Ленинский просп., д. 4, стр. 1, Москва, 119049;

Электродная ул., д. 2, стр. 1, Москва, 111524

Комаровский Никита Юрьевич — аспирант (1), стажер-исследователь (2)



Список литературы

1. Маянов Е., Гасанов А., Князев С., Наумов А. Тенденции развития рынка монокристаллов GaAs. ЭЛЕКТРОНИКА: наука, технология, бизнес. 2018; (2(173)): 172—184. https://doi.org/10.22184/1992-4178.2018.173.2.172.184

2. Goldstein J.I., Newbury D.E., Michael J.R., Ritchie N.W.M., Scott J.H.J., Joy D.C. Scanning electron microscopy and X-ray microanalysis. N.Y.: Springer; 2018. 554 p.

3. Маянов Е., Пархоменко Ю., Наумов А. Краеугольный кремний: промышленное полупроводниковое материаловедение в России. ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 2017; (4(164)): 98—104. https://doi.org/10.22184/1992-4178.2017.164.4.98.104

4. Парфентьева И.Б., Пугачев Б.В., Павлов В.Ф., Козлова Ю.П., Князев С.Н., Югова Т.Г. Особенности формирования дислокационной структуры в монокристаллах арсенида галлия, полученных методом Чохральского. Кристаллография. 2017; 62(2): 259—263. https://doi.org/10.7868/S0023476117020205

5. Кульчицкий Н.А., Маянов Е.П., Наумов А.В. Арсенид галлия и приборы нано-, микро- и оптоэлектроники на его основе. Нано- и микросистемная техника. 2017; 19(4): 207—211. https://doi.org/10.17587/nmst.19.207-214

6. Zulehner W. Historical overview of silicon crystal pulling development. 12 p. URL: https://www.sciencedirect.com/science/article/abs/pii/S0921510799004274 (дата обращения: 26.01.2023).

7. Uecker R. The historical development of Czochralski method. Journal of Crystal Growth. 2014; 401(99): 7—25. https://doi.org/10.1016/j.jcrysgro.2013.11.095

8. Наумов А.В. Метод создания мира. К 100-летию открытия метода Чохральского и 60-летию получения первого кристалла германия в России. ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 2016; (9(159)): 157—167.

9. Левонович Б.Н. О развитии производства материалов для электроники. В сб.: II Междунар. науч.-практ. конф. «Редкие металлы и материалы на их основе: технологии, свойства и применение», посвященная памяти академика Н.П. Сажина. РедМет-2022. 23–25 ноября, Москва. М.: РедМет; 2022. 138 с.

10. Князев С.Н., Югова Т.Г. Проблемы роста структурно-совершенных монокристаллов арсенида галлия методом Чохральского. В сб.: Редкие металлы и материалы на их основе: технологии, свойства и применение. РедМет-2021. Сажинские чтения. 9–10 декабря, 2021, Москва. М.: РедМет; 2021. С. 37.

11. Переломова Н.В., Тагиева М.М. Кристаллофизика. М.: Издательский Дом НИТУ «МИСиС»; 2013. 408 с.

12. Шалимова К.В. Физика полупроводников. СПб.: Лань; 2010. 390 с.

13. Левченко Д.С., Теплова Т.Б., Югова Т.Г. Исследование дислокационной структуры монокристаллов арсенида галлия, используемых для создания приборов сверхскоростной микроэлектроники. В сб.: Материалы II Междунар. науч.-практ. конф. «Экономика и практический менеджмент в России и за рубежом». Коломна, 30 апреля 2015. Коломна: Коломенский ин-т (фил.) ФГБОУ ВПО «Московский гос. машиностроительный ун-т (МАМИ)»; 2015. С. 135—137.

14. Случинская И.А. Основы материаловедения и технологии полупроводников. М.: Мир; 2002. 376 с.

15. Авров Д.Д., Лебедев А.О., Таиров Ю.М. Основные дефекты в слитках и эпитаксиальных слоях карбида кремния I. Дислокационная структура и морфологические дефекты. Известия высших учебных заведений. Электроника. 2015; 20(3): 225—238.

16. Косушкин В.Г., Кожитов Л.В., Кожитов С.Л. Состояние и проблемы выращивания монокристаллов полупроводников высокой однородности. Известия Юго-Западного государственного университета. Серия: Техника и технологии. 2013; (1): 10—22.

17. Кудря А.В., Соколовская Э.А., Скородумов С.В., Траченко В.А., Папина К.Б. Возможности цифровой световой микроскопии для объективной аттестации качества металлопродукции. Металловедение и термическая обработка металлов. 2018; (4(754)): 15—23.

18. Суворов Э.В. Физические основы экспериментальных методов исследования реальной структуры кристаллов. Черноголовка: ИФТТ РАН; 2021. 209 с.

19. Комаровский Н.Ю., Ющук В.В., Биндюг Д.В., Богембаев Н.Р. Исследование градиента распределения дефектов в монокристаллических пластинах кремния и арсенида галлия с помощью рентгеновской топографии. Международный научно-исследовательский журнал. 2021; (4-1(106)): 26—31. https://doi.org/10.23670/IRJ.2021.106.4.004

20. Князев С.Н., Комаровский Н.Ю., Чупраков В.А., Ющук В.В. Влияние технологических параметров на структурное совершенство монокристаллического арсенида галлия. В сб.: Междунар. науч. конф. «Современные материалы и передовые производственные технологии» (СМППТ-2021). Санкт-Петербург, 21–23 сентября 2021. СПб.: ФГОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»; 2021. С. 218—220.

21. Виглин Н.А., Грибов И.В., Цвелиховская В.М., Патраков Е.И. Очистка от оксидов поверхности пластин полупроводника InSb для создания латеральных спиновых клапанов. Физика и техника полупроводников. 2019; 53(2): 277—280. https://doi.org/10.21883/FTP.2019.02.47113.8906

22. Файнштейн С.М. Обработка поверхности полупроводниковых приборов. М.; Ленинград: Энергия; 1966. 256 с.

23. Левченко И.В., Стратийчук И.Б., Томашик В.Н., Маланич Г.П., Корчевой А.А. Особенности химического полирования кристаллов InAs, GaAs, InSb и GaSb в растворах (NH4)2Cr2O7–HBr–CH2(OH)CH2(OH). Вопросы химии и химических технологии. 2017; (2(111): 29—35.

24. Маслов А.А. Технология и конструкции полупроводниковых приборов. М.: Энергия; 1970. 296 c.

25. Самойлов А.М., Беленко С.В., Сирадзе Б.А., Тореев А.С., Донцов А.И., Филонова И.В. Плотность дислокаций в пленках PbTe, выращенных на подложках Si (100) и BaF2 (100) модифицированным методом «горячей стенки». Конденсированные среды и межфазные границы. 2013; 15(3): 322—331.

26. Суслов А.А., Чижик С.А. Сканирующие зондовые микроскопы (обзор). Материалы, технологии, инструменты. 1997; (3): 78—89. URL: http://microtm.com/download/mti-spmreview.pdf


Рецензия

Для цитирования:


Подгорный Д.А., Нестюркин М.С., Комаровский Н.Ю. Влияние технологических параметров при многопроволочной резке слитков GaAs на поверхностные характеристики пластин. Известия высших учебных заведений. Материалы электронной техники. 2023;26(2):101-109. https://doi.org/10.17073/1609-3577-2023-2-101-109. EDN: PMDJIV

For citation:


Podgorny D.A., Nestyurkin M.S., Komarovskiy N.Yu. Influence of technological parameters during multiwire cutting of GaAs ingots on the surface characteristics of the plates. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(2):101-109. (In Russ.) https://doi.org/10.17073/1609-3577-2023-2-101-109. EDN: PMDJIV

Просмотров: 103


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)