Influence of technological parameters during multiwire cutting of GaAs ingots on the surface characteristics of the plates
https://doi.org/10.17073/1609-3577-2023-2-101-109
EDN: PMDJIV
Abstract
Mechanical processing of semiconductor monocrystalline ingots is one of the key stages in the production of GaAs wafers. The main issue for obtaining high-quality plates is to determine the optimal parameters of machining and is to identify the dependencies of the surface quality of the substrates after cutting on the parameters set in this technological process. Technology for the production of polished semiconductor wafers (substrates) almost all semiconductor materials have a similar and has in its difference only a number of distinctive features related to the mechanical and structural features of individual materials. Mechanical processing is the first stage after crystal growth, in which it is necessary to observe and improve many technological parameters to obtain high-quality finished products. In the technological process of semiconductor processing, it is necessary first of all to divide the crystal into plates with similar surface characteristics. The quality of this separation determines which plates will eventually turn out and how suitable they will be as substrates for the production of devices in mass production. The study of the influence of cutting parameters on the structure of the disturbed layer and the basic geometric parameters of the plates allows us to identify the optimal parameters of mechanical cutting and to identify the range of deviations possible to obtain plates of similar quality for further processing.
About the Authors
D. A. PodgornyRussian Federation
4-1 Leninsky Ave., Moscow 119049
Dmitry A. Podgorny — Cand. Sci. (Phys.-Math.), Associate Professor, Department of Materials Science of Semiconductors and Dielectrics
M. S. Nestyurkin
Russian Federation
4-1 Leninsky Ave., Moscow 119049;
2-1 Elektrodnaya Str., Moscow 111524
Mikhail S. Nestyurkin — Master (1), Researcher (2)
N. Yu. Komarovskiy
Russian Federation
4-1 Leninsky Ave., Moscow 119049;
2-1 Elektrodnaya Str., Moscow 111524
Nikita Yu. Komarovskiy — Postgraduate Student (1), Trainee Researcher (2)
References
1. Mayanov E., Hasanov A., Knyazev S. GaАs Monocrystals’ market trends. ELECTRONICS: Science, Technology, and Business. 2018; (2(173)): 172—184. (In Russ.). https://doi.org/10.22184/1992-4178.2018.173.2.172.184
2. Goldstein J.I., Newbury D.E., Michael J.R., Ritchie N.W.M., Scott J.H.J., Joy D.C. Scanning electron microscopy and X-ray microanalysis. N.Y.: Springer; 2018. 554 p.
3. Mayanov E., Parkhomenko Y., Naumov A. Fundamental silicon: industrial semiconductor materials science in Russia. ELECTRONICS: Science, Technology, and Business. 2017; (4(164)): 98—104. (In Russ.). https://doi.org/10.22184/1992-4178.2017.164.4.98.104
4. Parfenteva I.B., Pugachev B.V., Pavlov V.F., Knyazev C.N., Yugova T.G., Kozlova Y.P. Specific features of the formation of dislocation structure in gallium arsenide single crystals obtained by the Czochralski method. Crystallography Reports. 2017; 62(2): 275—278. https://doi.org/10.1134/S1063774517020201
5. Kulchitskiy N.A., Mayanov E.P., Naumov A.V. Gallium arsenide: the basic material of microwave electronics. Nano- i mikrosistemnaya tekhnika = Nano- and Microsystems Technology. 2017; 19(4): 207—211. (In Russ.). https://doi.org/10.17587/nmst.19.207-214
6. Zulehner W. Historical overview of silicon crystal pulling development. 12 p. URL: https://www.sciencedirect.com/science/article/abs/pii/S0921510799004274 (accessed on 26.01.2023).
7. Uecker R. The historical development of Czochralski method. Journal of Crystal Growth. 2014; 401(99): 7—25. https://doi.org/10.1016/j.jcrysgro.2013.11.095
8. Naumov A. The method of creation of the world. On the 100th anniversary of Czochralski method development and the 60th anniversary of the first germanium crystal growth in Russia. ELECTRONICS: Science, Technology, and Business. 2016; (9(159)): 157—167. (In Russ.)
9. Levonovich B.N. On the development of the production of materials for electronics. Moscow: REDMet; 2022. 138 p. In: II Inter. Scient.-pract. conf. “Rare metals and materials based on them: technologies, properties and applications”, dedicated to the memory of Academician N.P. Sazhin. RareMet-2022. November 23–25, Moscow. Moscow: RareMet; 2022. (In Russ.)
10. Knyazev S.N., Yugova T.G. Problems of growth of structurally perfect single crystals of gallium arsenide by the Czochralski method. In: Rare metals and materials based on them: technologies, properties and applications. RareMe-2021. Sazhinsky readings. December 9–10, 2021, Moscow. Moscow: RareMe; 2021. P. 37. (In Russ.)
11. Perelomova N.V., Tagieva M.M. crystal physics. Moscow: Izdatel’skii Dom NITU “MISiS”; 2013. 408 p. (In Russ.)
12. Shalimova K.V. Physics of semiconductors. St. Petersburg: Lan’; 2010. 390 p. (In Russ.)
13. Levchenko D.S., Teplova T.B., Yugova T.G. Investigation of the dislocation structure of gallium arsenide single crystals used to create devices for ultrahigh-speed microelectronics. In: Proceed. of II Inter. Scient.-pract.. conf. “Economics and practical management in Russia and abroad”. Kolomna, April 30, 2015. Kolomna: Kolomenskii un-t (fil.) FGBOU VPO «Moskovskii gos. mashinostroitel’nyi un-t (MAMI)»; 2015. P. 135—137. (In Russ.)
14. Sluchinskaya I.A. Fundamentals of materials science and semiconductor technology. Moscow: Мir; 2012. 376 p. (In Russ.)
15. Avrov D.D., Lebedev A.O., Tairov Yu.M. Main defects in ingots and epitaxial layers of silicon carbide. I. Dislocation structure and morphological defects. Izvestiya Vysshikh Uchebnykh Zavedenii. Elektronika = Proceedings of Universities. Electronics. 2015; 20(3): 225—238. (In Russ.)
16. Kosushkin V.G., Kozhitov L.V., Kozhitov S.L. Stateand growing problem of high uniformity semiconductor single crystals. Proceedings of the Southwest State University. Series: Engineering and Technology. 2013; (1): 10—22. (In Russ.)
17. Kudrya A.V., Sokolovskaya E.A., Skorodumov S.V., Trachenko V.A., Papina K.B. Possibilities of digital optical microscopy for objective certification of the quality of metalware. Metallovedenie i termicheskaya obrabotka metallov. 2018; (4(754)): 15—23. (In Russ.)
18. Suvorov E.V. Physical foundations of experimental methods for studying the real structure of crystals. Chernogolovka: IFTT RAN; 2021. 209 p. (In Russ.)
19. Komarovsky N.Yu., Yushchuk V.V., Bindyug D.V., Bogembaev N.R. Investigation of the defect distribution gradient in single-crystal silicon and gallium arsenide plates using X-ray topography. Meždunarodnyj naučno-issledovatel’skij žurnal = International Research Journal. 2021; (4-1(106)): 26—31. (In Russ.). https://doi.org/10.23670/IRJ.2021.106.4.004
20. Knyazev S.N., Komarovsky N.Yu., Chuprakov V.A., Yushchuk V.V. Influence of technological parameters on the structural perfection of single-crystal gallium arsenide. In: Inter. scient. conf. “Modern materials and advanced production technologies” (SMPPT-2021). St. Petersburg, September 21–23, 2021. St. Petersburg: FGOU VO “Sankt-Peterburgskii politekhnicheskii universitet Petra Velikogo”; 2021. P. 218—220. (In Russ.)
21. Viglin N.A., Gribov I.V., Tsvelikhovskaya V.M., Patrakov E.I. Oxide removal from the InSb plate surface to produce lateral spin valves. Semiconductors. 2019; 53(2): 264—267. https://doi.org/10.1134/S1063782619020258
22. Fainshtein S.M. Semiconductor surface treatment. Moscow; Leningrad: Energiya; 1966. 256 p. (In Russ.)
23. Levchenko I.V., Stratiychuk I.B., Tomashyk V.N., Malanych G.P., Korchovyi A.A. Features of the chemical polishing of InAs, GaAs, InSb and GaSb crystals in the (NH4)2Cr2O7–HBr–CH2(OH)CH2(OH) solutions. Voprosy khimii i khimicheskoi technologii = Issues of Сhemistry and Сhemical Technology. 2017; (2(111): 29—35. (In Russ.)
24. Maslov A.A. Technology and design of semiconductor devices. Moscow: Energiya; 1970. 296 p. (In Russ.)
25. Samoylov A.M., Belenko S.V., Siradze B.A., Toreev A.S., Dontsov A.I., Filonova I.V. The dislocation density in PbTe films on Si (100) and BaF2 (100) substrates prepared by modified “Hot wall” technique. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2013; 15(3): 322—331. (In Russ.)
26. Suslov A.A., Chizhik S.A. Scanning probe microscopes (overview). Materialy, tekhnologii, instrument. 1997; (3): 78—89. (In Russ.). URL: http://microtm.com/download/mti-spmreview.pdf
Review
For citations:
Podgorny D.A., Nestyurkin M.S., Komarovskiy N.Yu. Influence of technological parameters during multiwire cutting of GaAs ingots on the surface characteristics of the plates. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(2):101-109. (In Russ.) https://doi.org/10.17073/1609-3577-2023-2-101-109. EDN: PMDJIV