Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Comparison between optical and electrophysical data on hole concentration in zinc doped p-GaAs

https://doi.org/10.17073/1609-3577j.met202304.525

Abstract

Optical and electrophysical properties of Cz-grown zinc doped p-GaAs samples have been investigated. Middle-infrared reflection spectra of ten p-GaAs samples have been obtained. Galvanomagnetic Van der Pau measurements have been made on these samples also, and the values of resistivity and Hall coefficient have been calculated. All experiments have been carried out at room temperature.
Reflection spectra have been processed by Kramers–Kronig relations. The spectral dependences of real and imaginary parts of complex dielectric permittivity have been obtained and loss function has been calculated. The value of characteristic wave number corresponding to high-frequency plasmon-phonon mode has been determined by loss function maximum position.
The theoretical calculations have been made, and the dependence has been obtained which gave the possibility to determine heavy hole concentration value at T = 295K by the value of characteristic wave number. Then by comparison of optical and Hall data the values of light hole mobility to heavy hole mobility ratio have been determined. This mobility ratio has been shown to be equal to (1.9–2.8) which is considerably less, than predicted theoretical value based on assumption that both light and heavy holes are scattered by optical phonons. It has been suggested that scattering mechanisms of light and heavy holes might be quite different.

About the Authors

A. G. Belov
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2-1 Elektrodnaya Str., Moscow 111524

Aleksandr G. Belov — Cand. Sci. (Phys.–Math.), Leading Researcher



V. E. Kanevskii
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2-1 Elektrodnaya Str., Moscow 111524

Vladimir E. Kanevskii — Cand. Sci. (Eng.), Senior Researcher



E. I. Kladova
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2-1 Elektrodnaya Str., Moscow 111524

Evgeniya I. Kladova — Researcher



S. N. Knyazev
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2-1 Elektrodnaya Str., Moscow 111524

Stanislav N. Knyazev — Cand. Sci. (Eng.), Head of the Laboratory of High-Temperature Semiconductor Compounds АIIIВV



N. Yu. Komarovskiy
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC); National University of Science and Technology “MISIS”
Russian Federation

2-1 Elektrodnaya Str., Moscow 111524;

4-1 Leninsky Ave., Moscow 119049

Nikita Yu. Komarovskiy — Trainee Researcher (1), Postgraduate Student (2)

 



I. B. Parfent’eva
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

2-1 Elektrodnaya Str., Moscow 111524

Irina B. Parfent’eva — Leading Engineer-Technologist



E. V. Chernyshova
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC); National University of Science and Technology “MISIS”
Russian Federation

2-1 Elektrodnaya Str., Moscow 111524;

4-1 Leninsky Ave., Moscow 119049

Evgeniya V. Chernyshova — Postgraduate Student



References

1. Belova I.M., Belov A.G., Kanevskii V.E., Lysenko A.P. Determining the concentration of free electrons in n-InSb from far-infrared reflectance spectra with allowance for plasmon-phonon coupling. Semiconductors. 2018; 52(15): 1942—1946. https://doi.org/10.1134/S1063782618150034

2. Yugova T.G., Belov A.G., Kanevskii V.E., Kladova E.I., Knyazev S.N. Comparison between optical and electrophysical data on free electron concentration in tellurium doped n-GaAs. Modern Electronic Materials. 2020; 6(3): 85—89. https://doi.org/10.3897/j. moem.6.3.64492

3. Yugova T.G., Belov A.G., Kanevskii V.E., Kladova E.I., Knyazev S.N., Parfent’eva I.B. Comparison between results of optical and electrical measurements of free electron concentration in n-InAs specimens. Modern Electronic Material. 2021; 7(3): 79—84. https://doi.org/10.3897/j.moem.7.3.76700

4. New semiconductor materials. Biology systems. Characteristics and properties. Band structure and carrier concentrationof gallium arsenide (GaAs). URL: https://www.ioffe.ru/SVA/NSM/Semicond/GaAs/index.html

5. Pozhela Yu.K. Plasma and current instabilities in semiconductors. Мoscow: Nauka; 1977. 368 p. (In Russ.)

6. Askerov B.M. Kinetic effects in semiconductors. Leningrad: Nauka; 1970. 304 p. (In Russ.)

7. Varga B.B. Coupling of plasmons to polar phonons in degenerate semiconductors. Physical Review Journals Archive. 1965; 137(6A): A1896. https://doi.org/10.1103/PhysRev.137.A1896

8. Singwi K.S., Tosi M.P. Interaction of plasmons and optical phonons in degenerate semiconductors. Physical Review Journals Archive. 1966; 147(2): 658. https://doi.org/10.1103/PhysRev.147.658

9. Shkerdin G., Rabbaa S., Stiens J., Vounckx R. Influence of electron scattering on phonon-plasmon coupled modes dispersion and free electron absorption in doped GaN semiconductors at mid-IR wavelengths. Physica Status Solidi (b). 2014; 251(4): 882—891. https://doi.org/10.1002/pssb.201350039

10. Ishioka K., Brixius K., Hofer U., Rustagi A., Thatcher E. M., Stanton C. J., Petec H. Dynamically coupled plasmon-phonon modes in GaP:An indirect-gap polar semiconductor. Physical Review B. 2015; 92(20): 205203. https://doi.org/10.1103/PhysRevB.92.205203

11. Volodin V.A., Efremov M.D., Preobrazhensky V.V. Semyagin B.R., Bolotov V.V., Sachkov V.A., Galaktionov E.A., Kretinin A.V. Investigation of phonon-plasmon interaction in GaAS/AlAs tunnel superlatticies. Pis’ma v zhurnal eksperimental’noi i teoreticheskoi fiziki = Journal of Experimental and Theoretical Physics. 2000; 71(11): 698—704. (In Russ.). https:/doi.org/10.1134/1.1307997

12. Mandal P.K., Chikan V. Plasmon-phonon copling in charged n-type CdSe quantum dots: a THz time-domain spectroscopic study. Nano Letters. 2007; 7(8): 2521—2528. https:/doi.org/10.1021/nl070853q

13. Trajic J., Romcevic N., Romcevic M., Nikiforov V.N. Plasmon-phonon and plasmon-two different phonon interaction in Pb1-xMnxTe mixed crystals. Materials Research Bulletin. 2007; 42(12): 2192—2201. https://doi.org/ 0.1016/j.materresbull.2007.01.003

14. Chudzinski P. Resonant plasmon-phonon coupling and its role in magneto-thermoelectricity in bismuth. The European Physical Journal B. 2015; 88(12): 344. https://doi.org/10.1140/epjb/e2015-60674-3

15. Madelung O. Physics of III-V compounds. J. Wiley; 1964. 480 p. (Russ. Transl.: Madelung O. Fizika poluprovodnikovykh soedinenii elementov III i V grupp. Moscow: Mir; 1967. 480 p.)

16. Ehrenreich H. Band structure and electron transport of GaAs. Physical Review Journals Archive. 1951; 120(6): 1951.

17. Rosi F.D., Meyerhofer D., Jensen R.V. Properties of p-type GaAs prepared by copper diffusion. Journal of Applied Physics. 1960; 31(6): 1105—1108. https://doi.org/10.1063/1.1735753

18. Hill D.E. Activation energy of holes in Zn-doped GaAs. Journal of Applied Physics. 1970; 41(4): 1815—818. https://doi.org/10.1063/1.1659109

19. Zhuravlev K.S., Terekhov A.S., Yakusheva N.A. Photoluminescence of complexes in epitaxial p-GaAs heavily doped with germanium. Fizika i Tekhnika Poluprovodnikov. 1988; 22(5): 777—779. (In Russ.)

20. Zhuravlev K.S., Chikichev S.I., Shtaske R., Yakusheva N.A. Investigation of complex formation in epitaxial heavily doped p-GaAs:Ge by photoluminescence method. Fizika i Tekhnika Poluprovodnikov. 1990; 24(9): 1645—1649. (In Russ.)

21. Komkov O.S., Pikhtin A.N., Zhilyaev Yu.V. Photoreflectance diagnostics of gallium arsenide. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2011; (1): 45—48. (In Russ.)

22. Sharmin M., Choudhury S., Akhtar N., Begum T. Optical and transport propeties of p-type GaAs. Journal of Bangladesh Academy of Sciences. 2012; 36(1): 97—107. https://doi.org/10.3329/jbas.v36i1.10926

23. Zhuravlev K.S., Terekhov A.S., Yakusheva N.A. Manganese-bound recombination centers in epitaxial GaAs grown from bismuth melt. Fizika i Tekhnika Poluprovodnikov. 1998; 32(1): 50—56. (In Russ.)

24. Zhuravlev K.S., Shamirzaev T.S., Yakusheva N.A. Properties of manganese-doped gallium arsenide layers grown by liquid-phase epitaxy from a bismuth melt. Semiconductors. 1998; 32(7): 704—710.

25. Gouskov L., Bilac S., Pimentel J., Gouskov A. Fabrication and electrical properties of epitaxial layers of GaAs doped with manganese. Solid-State Electronics. 1977; 20: 653–656. https://doi.org/10.1016/0038-1101(77)90039-9

26. Campos M.D., Gouskov A., Pons J.C. Residual acceptors in natural GaSb and GaxIn1-xSb; their contribution to transport between 4.7 and 300 K. Journal of Applied Physics. 1973; 44(6): 2642—2646. https://doi.org/10.1063/1.1662627

27. Wenzel M., Irmer G., Monecke J., Siegel W. Hole mobilities and the effective Hall factor in p-type GaAs. Journal of Applied Physics. 1997; 81(12): 7810—7816. https://doi.org/10.1063/1.365391

28. Lee H.J., Look D.C. Hole transport in pure and doped GaAs. Journal of Applied Physics. 1983; 54(8): 4446—4452. https://doi.org/10.1063/1.332640


Review

For citations:


Belov A.G., Kanevskii V.E., Kladova E.I., Knyazev S.N., Komarovskiy N.Yu., Parfent’eva I.B., Chernyshova E.V. Comparison between optical and electrophysical data on hole concentration in zinc doped p-GaAs. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(3):171-180. (In Russ.) https://doi.org/10.17073/1609-3577j.met202304.525

Views: 401


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)