Барьеры для инжекции электронов и дырок из подложки кремния в ВЧ-магнетронно напыленные пленки In2O3 : Er
https://doi.org/10.17073/1609-3577j.met202305.529
Аннотация
Пленки In2O3 : Er были напылены на подложки кремния с помощью ВЧ-магнетронного распыления-осаждения. Для подложек кремния как n-, так и p-типа проводимости токи через полученные МОП-структуры (Si/In2O3 : Er/In-контакт) были описаны в рамках модели термоэмиссии основных носителей через барьер с коррекцией приложенного напряжения на потенциал, падающий в кремнии. С помощью измерения температурной зависимости прямых токов при малом, подбарьерном смещении были найдены барьеры для инжекции электронов и дырок из кремния в пленки, равные 0,14 и 0,3 эВ, соответственно. Полученный невысокий барьер для дырок объясняется наличием плотности дефектных состояний, которые простираются от края зоны валентности в запрещенную зону In2O3 : Er и создают там канал проводимости для дырок. Наличие плотности дефектных состояний в запрещенной зоне In2O3 : Er подтверждается данными фотолюминесценции в соответствующем интервале энергий 1,55—3,0 эВ. Выполнен анализ зонной структура гетероперехода Si/In2O3 : Er. На его основе установлен энергетический интервал между электронами в зоне проводимости In2O3 : Er и дырками в канале проводимости в запрещенной зоне, равный 1,56 эВ.
Ключевые слова
Об авторах
К. В. ФеклистовРоссия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090;
ул. Ученых, д. 9, Новосибирск, 630090
Феклистов Константин Викторович — канд. физ.-мат. наук, младший научный сотрудник
А. Г. Лемзяков
Россия
пpосп. Акад. Лавpентьева, д. 11, Новосибирск, 630090
Лемзяков Алексей Георгиевич — научный сотрудник
А. А. Шкляев
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090;
ул. Пирогова, д. 2, Новосибирск, 630090
Шкляев Александр Андреевич — доктор физ.-мат. наук, главный научный сотрудник
Д. Ю. Протасов
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090;
просп. Карла Маркса, д. 20, Новосибирск, 630073
Протасов Дмитрий Юрьевич — канд. физ.-мат. наук, старший научный сотрудник
А. С. Дерябин
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090
Дерябин Александр Сергеевич — младший научный сотрудник
Е. В. Спесивцев
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090
Спесивцев Евгений Васильевич — канд. техн. наук, старший научный сотрудник
Д. В. Гуляев
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090
Гуляев Дмитрий Владимирович — канд. физ.-мат. наук, старший научный сотрудник
А. М. Пугачев
Россия
просп. Акад. Коптюга, д. 1, Новосибирск, 630090
Пугачев Алексей Маркович — канд. физ.-мат. наук, старший научный сотрудник
Д. Г. Есаев
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090
Есаев Дмитрий Георгиевич — канд. физ.-мат. наук, заведующий лабораторией
Список литературы
1. Sun C., Wade M., Lee Y., Orcutt J.S., Alloatti L., Georgas M.S., Waterman A.S., Shainline J.M., Avizienis R.R., Lin S., Moss B.R., Kumar R., Pavanello F., Atabaki A.H., Cook H.M., Ou A.J., Leu J.C., Chen Y.-H., Asanović K., Ram R.J., Popović M.A., Stojanović V.M. Single-chip microprocessor that communicates directly using light. Nature. 2015; 528: 534—538. https://doi.org/10.1038/nature16454
2. Atabaki A.H., Moazeni S., Pavanello F., Gevorgyan H., Notaros J., Alloatti L., Wade M.T., Sun Ch., Kruger S.A., Al Qubaisi H.M.K., Wang I., Zhang B., Khilo A., Baiocco Ch.V., Popović M.A., Stojanović V.M., Rajeev J. Ram integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature. 2018; 556, 349—354. https://doi.org/10.1038/s41586-018-0028-z
3. Cornet Ch., Léger Y., Robert C. Integrated lasers on silicon. Elsevier Ltd.; 2016. 178 p. https://doi.org/10.1016/C2015-0-01237-0
4. Di L., Kurczveil G., Huang X., Zhang C., Srinivasan S., Huang Z., Seyedi M.A., Norris K., Fiorentino M., Bowers J.E., Beausoleil R.G. Heterogeneous silicon light sources for datacom applications. Optical Fiber Technology. 2018; 44: 43—52. https://doi.org/10.1016/j.yofte.2017.12.005
5. Norman J.C., Jung D., Wan Y., Bowers J.E. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics. 2018; 3: 030901. https://doi.org/10.1063/1.5021345
6. Jung D., Norman J., Wan Y., Liu S., Herrick R., Selvidge J., Mukherjee K., Gossard A.C., Bowers J.E. Recent advances in InAs quantum dot lasers grown on on-Axis (001) silicon by molecular beam epitaxy. Physica Status Solidi (A). 2019; 216(1): 1800602. https://doi.org/10.1002/pssa.201800602
7. Jung D., Herrick R., Norman J., Turnlund K., Jan C., Feng K., Gossard A.C, Bowers J.E. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Applied Physics Letters. 2018; 112(15): 153507. https://doi.org/10.1063/1.5026147
8. Mukherjee K., Selvidge J., Jung D., Norman J., Taylor A.A., Salmon M., Liu A.Y., Bowers J.E., Herrick R.W. Recombination-enhanced dislocation climb in InAs quantum dot lasers on silicon. Journal of Applied Physics. 2020; 128(2): 025703. https://doi.org/10.1063/1.5143606
9. Shang C., Hughes E., Wan Y., Dumont M., Koscica R., Selvidge J., Herrick R., Gossard A.C., Mukherjee K., Bowers J.E. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica. 2021; 8(5): 749—754. https://doi.org/10.1364/OPTICA.423360
10. Carnall W.T., Fields P.R., Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. The Journal of Chemical Physics. 1968; 49(10): 4424—4442. http://dx.doi.org/10.1063/1.1669893
11. Gruber J.B., Henderson J.R., Muramoto M., Rajnak K., Conway J.G. Energy levels of single-crystal erbium oxide. The Journal of Chemical Physics. 1966; 45(2): 477—482. http://dx.doi.org/10.1063/1.1727592
12. Ennen H., Schneider J., Pomrenke G., Axmann A. 1.54 mkm luminescence of erbium implanted III-V semiconductors and silicon. Applied Physics Letters. 1983; 43(10): 943—945. http://dx.doi.org/10.1063/1.94190
13. Polman A. Erbium implanted thin film photonic materials. Journal of Applied Physics. 1997; 82(1): 1—39. https://doi.org/10.1063/1.366265
14. Kenyon A.J. Topical review: Erbium in silicon. Semiconductor Science and Technology. 2005; 20(12): R65—R84. https://doi.org/10.1088/0268-1242/20/12/R02
15. Coffa S., Franzò G., Priolo F. Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes. Journal of Applied Physics. 1997; 81(6): 2784—2793. https://doi.org/10.1063/1.363935
16. Coffa S., Franzò G., Priolo F. High efficiency and fast modulation of Er-doped light emitting Si diodes. Applied Physics Letters. 1996; 69(14): 2077—2079. https://doi.org/10.1063/1.116885
17. Polman A., van den Hoven G.N., Custer J.S., Shin J.H., Serna R., Alkemade P.F.A. Erbium in crystal silicon: Optical activation, excitation, and concentration limits. Journal of Applied Physics. 1995; 77(3): 1256—1262. https://doi.org/10.1063/1.358927
18. Gusev O.B., Bresler M.S., Pak P.E., Yassievich I.N., Forcales M., Vinh N.Q., Gregorkiewicz T. Excitation cross section of erbium in semiconductor matrices under optical pumping. Physical Review B. 2001; 64(7): 075302. https://doi.org/10.1103/PhysRevB.64.075302
19. Priolo F., Franzo G., Coffa S., Carnera A. Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si. Physical Review B. 1998; 57(8): 4443. https://doi.org/10.1103/PhysRevB.57.4443
20. Coffa S., Franz G., Priolo F., Polman A., Serna R. Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si. Physical Review B. 1994; 49(23): 16313. https://doi.org/10.1103/PhysRevB.49.16313
21. Bradley J.D.B., Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers. Laser & Photonics Reviews. 2011; 5(3): 368—403. https://doi.org/10.1002/lpor.201000015
22. Wang S., Eckau A., Neufeld E., Carius R., Buchal Ch. Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes. Applied Physics Letters. 1997; 71(19): 2824—2826. https://doi.org/10.1063/1.120147
23. Krzyzanowska H., Ni K.S., Fu Y., Fauchet P.M. Electroluminescence from Er-doped SiO2/nc-Si multilayers under lateral carrier injection. Materials Science and Engineering: B. 2012; 177(17): 1547—1550. https://doi.org/10.1016/j.mseb.2011.12.032
24. Berencen Y., Illera S., Rebohle L., Ramirez J.M., Wutzler R., Cirera A., Hiller D., Rodríguez J.A., Skorupa W., Garrido B. Luminescence mechanism for Er3+ ions in a silicon-rich nitride host under electrical pumping. Journal of Physics D: Applied Physics. 2016; 49(8): 085106. https://doi.org/10.1088/0022-3727/49/8/085106
25. Zhu C., Lv C., Gao Z., Wang C., Li D., Ma X., Yang D. Multicolor and near-infrared electroluminescence from the light-emitting devices with rare-earth doped TiO2 films. Applied Physics Letters. 2015; 107(13): 131103. https://doi.org/10.1063/1.4932064
26. Yang Y., Li Y., Xiang L., Ma X., Yang D. Low-voltage driven ~1.54 μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: Energy transfer from ZnO host to erbium ions. Applied Physics Letters. 2013; 102(18): 181111. http://dx.doi.org/10.1063/1.4804626
27. Yang Y., Jin L., Ma X., Yang D. Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure. Applied Physics Letters. 2012; 100(3): 031103. http://dx.doi.org/10.1063/1.3678026
28. Kim H.K., Li C.C., Nykolak G., Becker P.C. Photoluminescence and electrical properties of erbium-doped indium oxide films prepared by RF sputtering. Journal of Applied Physics. 1994; 76(12): 8209—8211. https://doi.org/10.1063/1.357882
29. Xiao Q., Zhu H., Tu D., Ma E., Chen X. Near-infrared-to-near-infrared downshifting and near-infrared-to-visible upconverting luminescence of Er3+-doped In2O3 nanocrystals. The Journal of Physical Chemistry C. 2013; 117(20): 10834—10841. http://dx.doi.org/10.1021/jp4030552
30. Feklistov K.V., Lemzyakov A.G., Prosvirin I.P., Gismatulin A.A., Shklyaev A.A., Zhivodkov Y.A., Krivyakin G.K., Komonov A.I., Kozhukhov А.S., Spesivsev E.V., Gulyaev D.V., Abramkin D.S., Pugachev A.M., Esaev D.G., Sidorov G.Yu. Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3 : Er films. Materials Research Express. 2020; 7(12): 25903. https://doi.org/10.1088/2053-1591/abd06b
31. Tahar R.B.H., Ban T., Ohya Y., Takahashi Y. Tin doped indium oxide thin films: Electrical properties. Journal of Applied Physics. 1998; 83(5): 2631—2645. https://doi.org/10.1063/1.367025
32. Hamberg I., Granqvist C.G. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. Journal of Applied Physics. 1986; 60(11): R123—R159. https://doi.org/10.1063/1.337534
33. Hoffling B., Schleife A., Fuchs F., Rödl C., Bechstedt F. Band lineup between silicon and transparent conducting oxides. Applied Physics Letters. 2010; 97(3): 032116. https://doi.org/10.1063/1.3464562
34. Wang E.Y., Hsu L. Determination of electron affinity of In2O3 from its heterojunction photovoltaic properties. Journal of the Electrochemical Society. 1978; 125: 1328—1331. https://doi.org/10.1149/1.2131672
35. Zhang X., Zhang Q., Lu F. Energy band alignment of an In2O3 : Mo/Si heterostructure, Semiconductor Science and Technology. 2007; 22(8): 900—904. https://doi.org/10.1088/0268-1242/22/8/013
36. Weiher R.L. Electrical properties of single crystals of indium oxide. Journal of Applied Physics. 1962; 33(9): 2834—2839. https://doi.org/10.1063/1.1702560
37. Zhang D.H., Li C., Han S., Liu X.L., Tang T., Jin W., Zhou C.W. Electronic transport studies of single-crystalline In2O3 nanowires. Applied Physics Letters. 2003; 82(1): 112—114. https://doi.org/10.1063/1.1534938
38. Weiher R.L., Ley R.P. Optical properties of indium oxide. Journal of Applied Physics. 1966; 37(1): 299—302. http://dx.doi.org/10.1063/1.1707830
39. King P.D.C., Veal T.D., Fuchs F., Wang Ch.Y., Payne D.J., Bourlange A., Zhang H., Bell G.R., Cimalla V., Ambacher O., Egdell R.G., Bechstedt F., McConville C.F. Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Physical Review B. 2009; 79(20): 205211. https://doi.org/10.1103/PhysRevB.79.205211
40. Kern W., Puotinen D.A. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Review. 1970; 31: 187—206. URL: https://www.americanradiohistory.com/ARCHIVE-RCA/RCA-Review/RCA-Review-1970-Jun.pdf
41. Зи С. Физика полупроводниковых приборов. Пер. с англ. В 2-х кн. М:. Мир; 1984. Кн. 1. 456 с.
42. Lee M.S., Choi W.C., Kim E.K., Kim C.K., Min S.K. Characterization of the oxidized indium thin films with thermal oxidation. Thin Solid Films. 1996; 279(1-2): 1—3. https://doi.org/10.1016/0040-6090(96)08742-1
43. Liang C., Meng G., Lei Y., Phillipp F., Zhang L. Catalytic growth of semiconducting In2O3 nanofibers. Advanced Materials. 2001; 13(17): 1330—1333. https://doi.org/10.1002/1521-4095(200109)13:17<1330::AID-ADMA1330>3.0.CO;2-6
44. Peng X., Meng G., Zhang J., Wang X., Wang Y., Wang C., Zhang L. Synthesis and photoluminescence of single-crystalline In2O3 nanowires. Journal of Materials Chemistry. 2002; (12): 1602—1605. https://doi.org/10.1039/B111315A
45. Mazzera M., Zha M., Calestani D., Zappettini A., Salviati G., Zanotti L. Low-temperature In2O3 nanowire luminescence properties as a function of oxidizing thermal treatments. Nanotechnology. 2007; 18(35): 355707. http://dx.doi.org/10.1088/0957-4484/18/35/355707
46. Kumar M., Singh V.N., Singh F., Lakshmi K.V., Mehta B.R., Singh J.P. On the origin of photoluminescence in indium oxide octahedron structures. Applied Physics Letters. 2008; 92(17): 171907. https://doi.org/10.1063/1.2910501
47. Wei Z.P., Guo D.L., Liu B., Chen R., Wong L.M., Yang W.F., Wang S.J., Sun H.D., Wu T. Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires. Applied Physics Letters. 2010; 96(3): 031902. https://doi.org/10.1063/1.3284654
48. Amirhoseiny M., Hassan Z., Shashiong N. Synthesis of nanocrystalline In2O3 on different Si substrates at wet oxidation environment. Optik. 2013; 124(17): 2679—2681. https://doi.org/10.1016/j.ijleo.2012.08.073
Рецензия
Для цитирования:
Феклистов К.В., Лемзяков А.Г., Шкляев А.А., Протасов Д.Ю., Дерябин А.С., Спесивцев Е.В., Гуляев Д.В., Пугачев А.М., Есаев Д.Г. Барьеры для инжекции электронов и дырок из подложки кремния в ВЧ-магнетронно напыленные пленки In2O3 : Er. Известия высших учебных заведений. Материалы электронной техники. 2023;26(3):234-247. https://doi.org/10.17073/1609-3577j.met202305.529
For citation:
Feklistov K.V., Lemzyakov A.G., Shklyaev A.A., Protasov D.Yu., Deryabin A.S., Spesivsev E.V., Gulyaev D.V., Pugachev A.M., Esaev D.G. The barriers for electron and hole injection from Si substrate into the RF magnetron-deposited In2O3 : Er films. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(3):234-247. (In Russ.) https://doi.org/10.17073/1609-3577j.met202305.529