Effect of doping on the optical properties of lanthanum-gallium tantalate
https://doi.org/10.17073/1609-3577j.met202308.551
EDN: KLCVUG
Abstract
Nominally pure lanthanum-gallium tantalate La3Ga5.5Ta0.5O14 crystals doped with aluminum, silicon and gallium oxide to above stoichiometric content have been grown by the Czochralski technique in iridium crucibles in argon and in agron with addition of oxygen atmospheres. The transmittance spectra of the crystals have been measured on a Cary-5000 UV-Vis-NIR spectrophotometer in the 200–800 nm range. Absorption spectra α(λ) have been plotted on the basis of the experimental data. The absorption spectra of the undoped crystals grown in an oxygen-free atmosphere have one weak absorption band at λ ~ 290 nm. The absorption spectra of the crystals grown in an agron with addition of oxygen have absorption bands at λ ~ 290, 360 and 480 nm. We show that for the crystals grown in an oxygen-free atmosphere, gallium doping to above stoichiometric content reduces the intensity of its only λ ~ 290 nm absorption band. Aluminum doping of the La3Ga5.5Ta0.5O14 crystals grown in an oxygen-free atmosphere significantly reduces the intensity of the λ ~ 290 nm absorption band and increases the intensity of the λ ~ 360 and 480 nm bands. Aluminum doping of the La3Ga5.5Ta0.5O14 crystals grown in an oxygen-containing atmosphere reduces the intensity of the λ ~ 360 and 480 nm bands and increases the intensity of the λ ~ 290 nm absorption band. Silicon doping of these crystals significantly reduces the intensity of the λ ~ 480 nm band and also reduces the intensity of the λ ~ 290 and 360 nm bands.
Keywords
About the Authors
E. V. ZabelinaRussian Federation
4-1 Leninsky Ave., Moscow 119049
Evgenia V. Zabelina — Сand. Sci. (Phys.-Math.), Researcher
N. S. Kozlova
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Nina S. Kozlova — Сand. Sci. (Phys.-Math.), Leading Expert
O. A. Buzanov
Russian Federation
16-1 Buzheninova Str., Moscow 107023
Oleg A. Buzanov — Cand. Sci. (Eng.), Leading Researcher
References
1. Dorogovin B.A., Stepanov S. Yu., Semenkovich G. V., Doubovski A.B., Philippov I.M, Buglov Yu.P., Danilova G. K. Homogeneity of elastic properties of Lanthanum Gallium Silicate Crystals. Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052). 2000; 195—199. https://doi.org/10.1109/FREQ.2000.887353
2. Takeda H., Sugiyama K., Inaba K., Shimamura K., Fukuda Т. Crystal Growth and Structural Characterization of New Piezoelectric Material La3Ta0,5Ga5,5O14. Japanese Journal of Applied Physics. 1997; 36 (2, 7B): L919—L921. https://doi.org/10.1143/jjap.36.L919
3. Alani M., Batis N., Laroche T., Nehari A., Cabane H., Lebbou K., Boy J.J. Influence of the growth and annealing atmosphere on the electrical conductivity of LGT crystals. Optical materials. 2017; 65: 99—102. https://doi.org/10.1016/j.optmat.2016.09.072
4. Zhang S., Yu F. Piezoelectric Materials for High Temperature Sensors. Journal of the American Ceramic Society. 2011; 94 (10): 3153—3170. https://doi.org/10.1111/j.1551-2916.2011.04792.x
5. Yu F.-P., Chen F.-F., Hou S., Wang H.-W., Wang Y.A., Tian S.-W., Jiang C., Li Y.- L., Cheng X.-F., Zhao X. High temperature piezoelectric single crystals: Recent developments.
6. Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). 2016; 1—7. https://doi.org/10.1109/SPAWDA.2016.7829944
7. Nehari A., Alombert-Goget G., Benamara O., Cabane H., Dumortier M., Jeandel P., Lasloudji I., Mokhtari F., Baron T., Wong G., Allani M., Boy J., Alzuaga S., Arapan L., Gegot F., Dufar T. Lebbou K. Czochralski crystal growth and characterization of large langatate (La3Ga5,5Ta0,5O14, LGT) crystals for SAW applications. CrystEngComm. 2019;
8. : 1764—1771. https://doi.org/10.1039/C8CE02157K
9. Takeda H., Tanaka S., Izukawa S., Shimizu H., Nishida T., Shiosaki T. Effective substitution of aluminum for gallium in langasite-type crystals for a pressure sensor use at high temperature. Proceedings of the IEEE Ultrasonics Symposium. 2005; 1: 560—563. https://doi.org/10.1109/ULTSYM.2005.1602915
10. Kaminsky A.A. Physics and spectroscopy of laser crystals. M.: Nauka; 1986. 271 p. [in Russ]
11. Georgescu S., Toma O., Chinie A.M., Gheorghe L., Achim A., Stefan A.S. Spectroscopic characteristics of langasite (La3Ga5SiO14) and langatate (La3Ga5,5Ta0,5O14) crystals doped with Eu3+. Optical Materials. 2008; 30 (6): 1007—1012. https://doi.org/10.1016/j.optmat.2007.05.035
12. Georgescu S., Toma O., Gheorghe L., Achim A., Chinie A.M., Stefan A. Disorder effects in the fluorescence spectra of Eu3+ in langatate (La3Ga5,5Ta0,5O14) crystals. Optical Materials. 2007; 30(2): 212—215. https://doi.org/10.1016/j.optmat.2006.10.027
13. Georgescu S., Toma O., Voiculescu A.M., Matei C., Birjega R., Petrescu L. Infrared-excited bright green and red luminescence in La3Ga5,5Ta0,5O14 doped with erbium and ytterbium. Physica B: Condensed Matter. 2012; 407(7): 1124—1127. https://doi.org/10.1016/j.physb.2012.0
14. Georgescu S., Voiculescu A.M., Mateia C., Stefana A.G., Toma O. Violet and near-ultraviolet upconversion luminescence in La3Ga5,5Ta0,5O14 codoped with Er3+ and Yb3+. Physica B: Condensed Matter. 2013; 413: 55—58. https://doi.org/10.1016/j.physb.2012.12.045
15. Komar J., Lisiecki R., Ryba-Romanowski W., Berkowski M. Spectroscopic characterization of Sm3+ in La3Ga5,5Ta0,5O14 single crystals. Journal of Alloys and Compounds. 2014; 610: 50-54. https://doi.org/10.1016/j.jallcom.2014.04.191
16. Komar J., Lisiecki R., Ryba-Romanowski W., Berkowski M. Effect of temperature on excited state relaxation dynamics and up-conversion phenomena in La3Ga5,5Ta0,5O14:Er3+ single crystals. Journal of Alloys and Compounds. 2014; 610: 451—455. https://doi.org/10.1016/j.jallcom.2014.05.016
17. Lisiecki R., Ryba-Romanowski W., Macalik L., Komar J., Berkowski M. Optical study of La3Ga5,5Ta0,5O14 single crystal co-doped with Ho3+ and Yb3+. Applied Physics B. 2014; 116 (1): 183—194. https://doi.org/10.1007/s00340-013-5674-0
18. Voiculescu A.M., Georgescu S., Matei C., Stefan A., Toma O. Synthesis and characterization of La3Ga5,5Ta0,5O14 doped with holmium and ytterbium. Romanian Journal of Physics. 2015; 60 (3–4): 495—501. https://rjp.nipne.ro/2015_60_3-4/RomJPhys.60.p495.pdf
19. Zverev P.G., Shilova G.V. Investigation of the second order nonlinear susceptibility in langasite and langatate crystals. Laser Physics Workshop 2015. Book of abstracts. Seminar 5. 2015.
20. Boursier E., Segonds P., Boulanger B., Félix C., Debray J., Jegouso D., Ménaert B., Roshchupkin D., Shoji I. Phase-matching directions, refined Sellmeier equations, and second-order nonlinear coefficient of the infrared Langatate crystal La3Ga5,5Ta0,5O14. Optics Letters. 2014; 39(13): 4033—4036. https://doi.org/10.1364/OL.39.004033
21. Kaminskii A.A., Butashin A.V., Maslyanitsin I.A., Shigorin V.D. Nonlinear Optical Properties of Acentric Crystals with Ca‐Gallogermanate Structure. Physica Status Solidi (a). 1989; 112(1): K49—K52. https://doi.org/10.1002/pssa.2211120172
22. Stade J., Bohaty L., Hengst M., Heimann R.B. Electro-optic, piezoelectric and dielectric properties of langasite (La3Ga5SiO14), langanite (La3Ga5,5Nb0,5O14) and langataite (La3Ga5,5Ta0,5O14). Crystal Research & Technology. 2002; 37(10): 1113—1120. https://doi.org/10.1002/1521-4079(200210)37
23. Allani M., Batis N., Laroche T., Nehari A., Cabane H., Lebbou K., Vacheret X., Boy J.J. Effects of the Langatate crystal quality on the resonance frequency stability of bulk acoustic wave resonators. Advances in Applied Ceramics. Structural, Functional and Bioceramics. 2017; 279—284. https://doi.org/10.1080/17436753.2018.1447756
24. Buzanov O.A., Zabelina E.V., Kozlova N.S. Optical properties of lanthanum-gallium tantalate at different growth and post-growth treatment conditions. Crystallography Reports. 2007; 52(4): 691-696 https://doi.org/10.1134/S1063774507040177
25. Buzanov O.A., Naumov A.V., Nechaev V.V., Knyazev S.N. A new approach to the growth of langasite crystals. Proceedings of 1996 IEEE International Frequency Control Symposium. 1996; 131—136. https://doi.org/10.1109/FREQ.1996.559832
26. Uda S., Wang S.Q., Konishi N., Inaba H., Harada J. Growth habits of 3 and 4-inch langasite single crystals. Journal of Crystal Growth. 2002; 237- 239(1): 707—713. https://doi.org/10.1016/S0022-0248(01)02007-3
27. Zabelina E.V. Inhomogeneities in lanthanum-gallium tantalate crystals and their effect on optical properties. Dissertation for the degree of candidate of physical and mathematical sciences. 2018. 150 p. https://misis.ru/science/dissertations/2018/3392/
28. Lamoreaux R.H., Hildenbrand D.L., Brewer L. High-temperature vaporization behavior of oxide II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd and Hg. Journal of Physical and Chemical Reference Data. 1987; 16(3): 419—443. https://doi.org/10.1063/1.555799
29. Bohm J., Heimann R.B., Hengst M., Roewer R., Schindler J. Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5,5Nb0,5O14 (LGN) and La3Ga5,5Ta0,5O14 (LGT). Part I. Journal of crystal growth. 1999; 204: 128—136. https://doi.org/10.1016/S0022-0248(99)00186-4
30. Database of Ionic Radii http://abulafia.mt.ic.ac.uk/shannon/
31. Burns R.P., Jason A.J., Inghram M.G. Discontinuity in the Rate of Evaporation of Aluminum Oxide. Journal of Chemical Physics. 1964; 40(9): 2739—2740. https://doi.org/10.1063/1.1725595
32. Burns R.P. Systematics of the Evaporation Coefficient Al2O3, Ga2O3, In2O3. Journal of Chemical Physics. 1966; 44(9): 3307—3319. https://doi.org/10.1063/1.1727229
Supplementary files
Review
For citations:
Zabelina E.V., Kozlova N.S., Buzanov O.A. Effect of doping on the optical properties of lanthanum-gallium tantalate. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(4):272-278. (In Russ.) https://doi.org/10.17073/1609-3577j.met202308.551. EDN: KLCVUG