Electrophysical properties, memristive and resistive switching in charged domain walls in lithium niobate
https://doi.org/10.17073/1609-3577j.met202310.565
Abstract
Charged domain walls (CDW) in ferroelectric materials are interesting from fundamental and applied points of view, since they have electrical properties different from bulk ones. At the microstructural level, CDW in ferroelectrics are two-dimensional defects that separate regions of the material with different directions of spontaneous polarization vectors. Compensation of the electric field of the bound ionic charge of the CDW by mobile carriers leads to the formation of extended narrow channels with increased conductivity in the original dielectric material. By controlling the position and angle of inclination of the CDW relative to the direction of spontaneous polarization, it is possible to change its conductivity in a wide range, which opens up broad prospects for creating memory devices, including for neuromorphic systems. The review presents the current state of research in the field of formation and application of CDW formed in single crystals of uniaxial ferroelectric lithium niobate (LiNbO3, LN) as resistive and memristive switching devices. The main methods for forming CDW in single crystals and thin films of LN are considered, and modern data on the electrophysical properties and methods for controlling the electrical conductivity of CDW are presented. The prospects for using CDW in memory devices with resistive and memristive switching are discussed.
Keywords
About the Authors
A. M. KislyukRussian Federation
4-1 Leninsky Ave., Moscow 119049
Alexander M. Kislyuk — Cand. Sci. (Phys.-Math.), Researcher
I. V. Kubasov
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Ilya V. Kubasov — Cand. Sci. (Phys.-Math.), Senior Researcher
A. V. Turutin
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Andrei V. Turutin — Cand. Sci. (Phys.-Math.), Senior Researcher
A. A. Temirov
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Alexander A. Temirov — Researcher
A. S. Shportenko
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Andrey S. Shportenko — Junior Researcher
V. V. Kuts
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Viktor V. Kuts — Junior Researcher
M. D. Malinkovich
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Mikhail D. Malinkovich — Cand. Sci. (Phys.-Math.), Associate Professor
References
1. Vul B.M., Guro G.M., Ivanchik I.I. Encountering domains in ferroelectrics. Ferroelectrics. 1973; 6(1): 29—31. https://doi.org/10.1080/00150197308237691
2. Meier D., Selbach S.M. Ferroelectric domain walls for nanotechnology. Nature Reviews Materials. 2021; 7(3): 157—173. https://doi.org/10.1038/s41578-021-00375-z
3. Aristov V.V., Kokhanchik L.S., Voronovskii Y.I. Voltage contrast of ferroelectric domains of lithium niobate in SEM. Physica Status Solidi (a). 1984; 86(1): 133—141. https://doi.org/10.1002/pssa.2210860113
4. Werner C.S., Herr S.J., Buse K., Sturman B., Soergel E., Razzaghi C., Breunig I. Large and accessible conductivity of charged domain walls in lithium niobate. Scientific Reports. 2017; 7(1): 9862. https://doi.org/10.1038/s41598-017-09703-2
5. Vasudevan R.K., Wu W., Guest J.R., Baddorf A.P., Morozovska A.N., Eliseev E.A., Balke N., Nagarajan V., Maksymovych P., Kalinin S.V. Domain wall conduction and polarization-mediated transport in ferroelectrics. Advanced Functional Materials. 2013; 23(20): 2592—2616. https://doi.org/10.1002/adfm.201300085
6. Gureev M.Y., Tagantsev A.K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Physical Review B. Condensed matter. 2011; 83(18): 184104. https://doi.org/10.1103/PhysRevB.83.184104
7. Kubasov I.V., Kislyuk A.M., Ilina T.S., Shportenko A.S., Kiselev D.A., Turutin A.V., Temirov A.A., Malinkovich M.D., Parkhomenko Y.N. Conductivity and memristive behavior of completely charged domain walls in reduced bidomain lithium niobate. Journal of Materials Chemistry C. 2021; 9(43): 15591—15607. https://doi.org/10.1039/d1tc04170c
8. Sluka T., Tagantsev A.K., Bednyakov P., Setter N. Free-electron gas at charged domain walls in insulating BaTiO3. Nature Communications. 2013; 4(1): 1808. https://doi.org/10.1038/ncomms2839
9. Liu S., Cohen R.E. Stable charged antiparallel domain walls in hyperferroelectrics. Journal of Physics: Condensed Matter. 2017; 29(24): 244003. https://doi.org/10.1088/1361-648X/aa6f95
10. Seidel J., Martin L.W., He Q., Zhan Q., Chu Y.-H., Rother A., Hawkridge M.E., Maksymovych P., Yu P., Gajek M., Balke N., Kalinin S.V., Gemming S., Wang F., Catalan G., Scott J.F., Spaldin N.A., Orenstein J., Ramesh R. Conduction at domain walls in oxide multiferroics. Nature Materials. 2009; 8(30): 229—234. https://doi.org/10.1038/nmat2373
11. Evans D.M., Garcia V., Meier D., Bibes M. Domains and domain walls in multiferroics. Physical Sciences Reviews. 2020; 5(9). https://doi.org/10.1515/psr-2019-0067
12. Eliseev E.A., Morozovska A.N., Svechnikov G.S., Gopalan V., Shur V.Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Physical Review B. Condensed Matter and Materials Physics. 2011; 83(23): 235313. https://doi.org/10.1103/PhysRevB.83.235313
13. Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Y.N. Bidomain ferroelectric crystals: properties and prospects of application. Russian Microelectronics. 2021; 50(8): 571—616. https://doi.org/10.1134/S1063739721080035
14. Garrity K.F., Rabe K.M., Vanderbilt D. Hyperferroelectrics: Proper ferroelectrics with persistent polarization. Physical Review Letters. 2014; 112(12): 127601. https://doi.org/10.1103/PhysRevLett.112.127601
15. Cherifi-Hertel S., Voulot C., Acevedo-Salas U., Zhang Y., Crégut O., Dorkenoo K.D., Hertel R. Shedding light on non-Ising polar domain walls: Insight from second harmonic generation microscopy and polarimetry analysis. Journal of Applied Physics. 2021; 129(8): 81101. https://doi.org/10.1063/5.0037286
16. Lee D., Behera R.K., Wu P., Xu H., Li Y.L., Sinnott S.B., Phillpot S.R., Chen L.Q., Gopalan V. Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls. Physical Review B. 2009; 80(6): 060102. https://doi.org/10.1103/PhysRevB.80.060102
17. Gonnissen J., Batuk D., Nataf G.F., Jones L., Abakumov A.M., Van Aert S., Schryvers D., Salje E.K.H. Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges. Advanced Functional Materials. 2016; 26(42): 7599—7604. https://doi.org/10.1002/adfm.201603489
18. Zhang Y., Qian Y., Jiao Y., Wang X., Gao F., Bo F., Xu J., Zhang G. Conductive domain walls in x-cut lithium niobate crystals. Journal of Applied Physics. 2022; 132(4): 0144102. https://doi.org/10.1063/5.0101067
19. Poberaj G., Hu H., Sohler W., Günter P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser & Photonics Reviews. 2012; 6(4): 488—503. https://doi.org/10.1002/lpor.201100035
20. Volk T.R., Gainutdinov R.V., Zhang H.H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films. Applied Physics Letters. 2017; 110(13): 132905. https://doi.org/10.1063/1.4978857
21. Lu H., Tan Y., McConville J.P.V., Ahmadi Z., Wang B., Conroy M., Moore K., Bangert U., Shield J.E., Chen L.-Q., Gregg J.M., Gruverman A. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Advanced Materials. 2019; 31(48): e1902890. https://doi.org/10.1002/adma.201902890
22. Kämpfe T., Wang B., Haußmann A., Chen L.-Q., Eng L.M. Tunable non-volatile memory by conductive ferroelectric domain walls in lithium niobate thin films. Crystals. 2020; 10(9): 804. https://doi.org/10.3390/cryst10090804
23. Gainutdinov R., Volk T. Effects of the domain wall conductivity on the domain formation under AFM-tip voltages in ion-sliced LiNbO3 films. Crystals. 2020; 10(12): 1160. https://doi.org/110.3390/cryst10121160
24. Boes A., Corcoran B., Chang L., Bowers J., Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser and Photonics Reviews. 2018; 12(4): 1700256. https://doi.org/10.1002/lpor.201700256
25. Alikin D.O., Ievlev A.V., Turygin A.P., Lobov A.I., Kalinin S.V., Shur V.Y. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Applied Physics Letters. 2015; 106(18): 182902. https://doi.org/10.1063/1.4919872
26. Shur V.Y., Rumyantsev E.L., Nikolaeva E.V., Shishkin E.I. Formation and evolution of charged domain walls in congruent lithium niobate. Applied Physics Letters. 2000; 77(22): 3636—3638. https://doi.org/10.1063/1.1329327
27. Gopalan V., Dierolf V., Scrymgeour D.A. Defect-domain wall interactions in trigonal ferroelectrics. Annual Review of Materials Research. 2007; 37(1): 449—489. https://doi.org/10.1146/annurev.matsci.37.052506.084247
28. Shao G., Bai Y., Cui G., Li C., Qiu X., Geng D., Wu D., Lu Y. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses. AIP Advances. 2016; 6(7): 075011. https://doi.org/10.1063/1.4959197
29. Bednyakov P.S., Sturman B.I., Sluka T., Tagantsev A.K., Yudin P.V. Physics and applications of charged domain walls. npj Computational Materials. 2018; 4(1): 65. https://doi.org/10.1038/s41524-018-0121-8
30. Müller M., Soergel E., Buse K. Influence of ultraviolet illumination on the poling characteristics of lithium niobate crystals. Applied Physics Letters. 2003; 83(9): 1824—1826. https://doi.org/10.1063/1.1606504
31. Shur V.Y., Akhmatkhanov A.R., Baturin I.S. Fatigue effect in ferroelectric crystals: Growth of the frozen domains. Journal of Applied Physics. 2012; 111(12): 124111. https://doi.org/10.1063/1.4729834
32. Esin A.A., Akhmatkhanov A.R., Shur V.Y. Tilt control of the charged domain walls in lithium niobate. Applied Physics Letters. 2019; 114(9): 092901. https://doi.org/10.1063/1.5079478
33. Ievlev A.V., Alikin D.O., Morozovska A.N., Varenyk O.V., Eliseev E.A., Kholkin A.L., Shur V.Y., Kalinin S.V. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. ACS Nano. 2015; 9(1): 769—777. https://doi.org/10.1021/nn506268g
34. Turygin A.P., Alikin D.O., Kosobokov M.S., Ievlev A.V., Shur V.Y. Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM Tip. ACS Applied Materials & Interfaces. 2018; 10(42): 36211—36217. https://doi.org/10.1021/acsami.8b10220
35. Ievlev A.V., Morozovska A.N., Shur V.Y., Kalinin S.V. Ferroelectric switching by the grounded scanning probe microscopy Tip. Physical Review B. Condensed Matter and Materials Physics. 2015; 91(21): 214109. https://doi.org/10.1103/PhysRevB.91.214109
36. Reitzig S., Rüsing M., Zhao J., Kirbus B., Mookherjea S., Eng L.M. “Seeing Is Believing” – In-depth analysis by co-imaging of periodically-poled x-cut lithium niobate thin films. Crystals. 2021; 11(3): 288. https://doi.org/10.3390/cryst11030288
37. Kubasov I.V., Kislyuk A.M., Turutin A.V., Bykov A.S., Kiselev D.A., Temirov A.A., Zhukov R.N., Sobolev N.A., Malinkovich M.D., Parkhomenko Y.N. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal. Sensors (Basel). 2019; 19(3): 614. https://doi.org/10.3390/s19030614
38. Alikin D.O., Shishkina E.I., Nikolaeva E.V., Shur V.Y., Sarmanova M.F., Ievlev A.V., Nebogatikov M.S., Gavrilov N.V. Formation of self-assembled domain structures in lithium niobate modified by ar ions implantation. Ferroelectrics. 2010; 399(1): 35—42. https://doi.org/10.1080/00150193.2010.489855
39. Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 1977; 16(6): 1069—1070. https://doi.org/10.1143/JJAP.16.1069
40. Evlanova N.F., Rashkovich L.N. Effect of annealing on the domain structure of lithium methaniobate single crystals. Physics of the Solid State. 1974; 16(2): 555—557. (In Russ.)
41. Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices. IEEE 1986 Ultrasonics Symposium. Williamsburg, VA, USA. 17—19 November 1986. IEEE; 1986. P. 719—722. https://doi.org/10.1109/ULTSYM.1986.198828
42. Kubasov I.V., Timshina M.S., Kiselev D.A., Malinkovich M.D., Bykov A.S., Parkhomenko Y.N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing. Crystallography Reports. 2015; 60(5): 700—705. https://doi.org/10.1134/S1063774515040136
43. Kubasov I.V., Kislyuk A.M., Bykov A.S., Malinkovich M.D., Zhukov R.N., Kiselev D.A., Ksenich S.V., Temirov A.A., Timushkin N.G., Parkhomenko Y.N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing. Crystallography Reports. 2016; 61(2): 258—262. https://doi.org/10.1134/S1063774516020115
44. Kugel V.D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals. Applied Physics Letters. 1993; 62(23): 2902—2904. https://doi.org/10.1063/1.109191
45. Rosenman G., Kugel V.D., Shur D. Diffusion-induced domain inversion in ferroelectrics. Ferroelectrics. 1995; 172(1): 7—18. https://doi.org/10.1080/00150199508018452
46. Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Applied Physics Letters. 1987; 50(20): 1413—1414. https://doi.org/10.1063/1.97838
47. Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide. Journal of Applied Physics. 1979; 50(7): 4599—4603. https://doi.org/10.1063/1.326568
48. Chen J., Zhou Q., Hong J.F., Wang W.S., Ming N.B., Feng D., Fang C.G. Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3. Journal of Applied Physics. 1989; 66(1): 336—341. https://doi.org/10.1063/1.343879
49. Nakamura K., Shimizu H. Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3. Applied Physics Letters. 1990; 56(16): 1535—1536. https://doi.org/10.1063/1.103213
50. Zhu Y.-Y., Zhu S.-N., Hong J.-F., Ming N. Ben domain inversion in LiNbO3 by proton exchange and quick heat treatment. Applied Physics Letters. 1994; 65(5): 558—560. https://doi.org/10.1063/1.112295
51. Zhang Z.-Y.Y., Zhu Y.-Y.Y., Zhu S.-N.N., Ming N.-B. Ben domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3. Physica Status Solidi (A). Applied Research. 1996; 153(1): 275—279. https://doi.org/10.1002/pssa.2211530128
52. Åhlfeldt H., Webjörn J., Arvidsson G. Periodic domain inversion and generation of blue light in lithium tantalate waveguides. IEEE Photonics Technology Letters. 1991; 3(7): 638—639. https://doi.org/10.1109/68.87938
53. Tasson M., Legal H., Peuzin J.C., Lissalde F.C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie. Physica Status Solidi (a). 1975; 31(2): 729—737. https://doi.org/10.1002/pssa.2210310246
54. Tasson M., Legal H., Gay J.C., Peuzin J.C., Lissalde F.C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point. Ferroelectrics. 1976; 13(1): 479—481. https://doi.org/10.1080/00150197608236646
55. Luh Y.S., Feigelson R.S., Fejer M.M., Byer R.L. Ferroelectric domain structures in LiNbO3 single-crystal fibers. Journal of Crystal Growth. 1986; 78(1): 135—143. https://doi.org/10.1016/0022-0248(86)90510-5
56. Bykov A.S., Grigoryan S.G., Zhukov R.N., Kiselev D.A., Ksenich S.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method. Russian Microelectronics. 2014; 43(8): 536—542. https://doi.org/10.1134/S1063739714080034
57. Blagov A.E., Bykov A.S., Kubasov I.V., Malinkovich M.D., Pisarevskii Y.V., Targonskii A.V., Eliovich I.A., Kovalchuk M.V. An electromechanical X-ray optical element based on a hysteresis-free monolithic bimorph crystal. Instruments and Experimental Techniques. 2016; 59(5): 728—732. https://doi.org/10.1134/S0020441216050043
58. Marchenkov N., Kulikov A., Targonsky A., Eliovich Y., Pisarevsky Y., Seregin A., Blagov A., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Resonant mode. Sensors and Actuators A: Physical. 2019; 293: 48—55. https://doi.org/10.1016/j.sna.2019.04.028
59. Kulikov A., Blagov A., Marchenkov N., Targonsky A., Eliovich Y., Pisarevsky Y., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast x-ray experiments: Static and quasistatic modes. Sensors and Actuators A: Physical. 2019; 291: 68—74. https://doi.org/10.1016/j.sna.2019.03.041
60. Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer. Ferroelectrics. 1989; 93(1): 211—216. https://doi.org/10.1080/00150198908017348
61. Nakamura K. Antipolarity domains formed by heat treatment of ferroelectric crystals and their applications. Japanese Journal of Applied Physics. 1992; 31(S1): 9—13. https://doi.org/10.7567/JJAPS.31S1.9
62. Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer. Japanese Journal of Applied Physics. 1993; 32(5S): 2415—2417. https://doi.org/10.1143/JJAP.32.2415
63. Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer. Japanese Journal of Applied Physics. 1987; 26(S2): 198—200. https://doi.org/10.7567/JJAPS.26S2.198
64. Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. Journal of Magnetism and Magnetic Materials. 2019; 486: 165209. https://doi.org/10.1016/j.jmmm.2019.04.061
65. Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Temirov A.A., Ksenich S.V., Kiselev D.A., Bykov A.S., Parkhomenko Y.N. Vibrational power harvester based on lithium niobate bidomain plate. Acta Physica Polonica A. 2018; 134(1): 90—92. https://doi.org/10.12693/APhysPolA.134.90
66. Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Pakhomov O.V., Sobolev N.A., Kholkin A.L. Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2019; 66(9): 1480—1487. https://doi.org/10.1109/TUFFC.2019.2908396
67. Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Sobolev N.A., Kholkin A.L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3-based composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2020; 67(6): 1219—1229. https://doi.org/10.1109/TUFFC.2020.2967842
68. Webjorn J., Laurell F., Arvidsson G., Webjörn J., Laurell F., Arvidsson G., Webjorn J., Laurell F., Arvidsson G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation. Journal of Lightwave Technology. 1989; 7(10): 1597—1600. https://doi.org/10.1109/50.39103
69. Kugel V.D., Rosenman G. Ferroelectric domain switching in heat-treated LiNbO3 crystals. Ferroelectrics Letters Section. 1993; 15(3-4): 55—60. https://doi.org/10.1080/07315179308204239
70. Soergel E. Piezoresponse force microscopy (PFM). Journal of Physics D: Applied Physics. 2011; 44(46): 464003. https://doi.org/10.1088/0022-3727/44/46/464003
71. Kalinin S.V., Bonnell D.A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Physical Review B. Condensed Matter and Materials Physics. 2002; 65(12): 1—11. https://doi.org/10.1103/PhysRevB.65.125408
72. Yin Q.R., Zeng H.R., Yu H.F., Li G.R., Xu Z.K. Near-field acoustic microscopy of ferroelectrics and related materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2003; 99(1–3): 2—5. https://doi.org/10.1016/S0921-5107(02)00438-5
73. Yin Q.R., Zeng H.R., Yu H.F., Li G.R., Lang S., Chan H.L.W. Near-field acoustic and piezoresponse microscopy of domain structures in ferroelectric material. Journal of Materials Science. 2006; 41(1): 259—270. https://doi.org/10.1007/s10853-005-7244-2
74. Berth G., Hahn W., Wiedemeier V., Zrenner A., Sanna S., Schmidt W.G. Imaging of the ferroelectric domain structures by confocal raman spectroscopy. Ferroelectrics. 2011; 420(1): 44—48. https://doi.org/10.1080/00150193.2011.594774
75. Rüsing M., Neufeld S., Brockmeier J., Eigner C., Mackwitz P., Spychala K., Silberhorn C., Schmidt W.G., Berth G., Zrenner A., Sanna S. Imaging of 180 ferroelectric domain walls in uniaxial ferroelectrics by confocal Raman spectroscopy: Unraveling the contrast mechanism. Physical Review Materials. 2018; 2(10): 103801. https://doi.org/110.1103/PhysRevMaterials.2.103801
76. Dierolf V., Sandmann C., Kim S., Gopalan V., Polgar K. Ferroelectric domain imaging by defect-luminescence microscopy. Journal of Applied Physics. 2003; 93(4): 2295—2297. https://doi.org/10.1063/1.1538333
77. Otto T., Grafström S., Chaib H., Eng L.M. Probing the nanoscale electro-optical properties in ferroelectrics. Applied Physics Letters. 2004; 84(7): 1168—1170. https://doi.org/10.1063/1.1647705
78. Pei S.-C., Ho T.-S., Tsai C.-C., Chen T.-H., Ho Y., Huang P.-L., Kung A. H., Huang S.-L. Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics. Optics Express. 2011; 19(8): 7153. https://doi.org/10.1364/oe.19.007153
79. Bozhevolnyi S.I., Pedersen K., Skettrup T., Zhang X., Belmonte M. Far- and near-field second-harmonic imaging of ferroelectric domain walls. Optics Communications. 1998; 152(4-6): 221—224. https://doi.org/10.1016/S0030-4018(98)00176-X
80. Neacsu C.C., Van Aken B.B., Fiebig M., Raschke M.B. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3. Physical Review B. Condensed Matter and Materials Physics. 2009; 79(10): 100107. https://doi.org/10.1103/PhysRevB.79.100107
81. Sheng Y., Best A., Butt H.-J., Krolikowski W., Arie A., Koynov K. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Optics Express. 2010; 18(16): 16539. https://doi.org/10.1364/oe.18.016539
82. Kämpfe T., Reichenbach P., Schröder M., Haußmann A., Eng L. M., Woike T., Soergel E. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation. Physical Review B. Condensed Matter and Materials Physics. 2014; 89(3): 035314. https://doi.org/10.1103/PhysRevB.89.035314
83. Cherifi-Hertel S., Bulou H., Hertel R., Taupier G., Dorkenoo K.D.H., Andreas C., Guyonnet J., Gaponenko I., Gallo K., Paruch P. Non-ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nature Communications. 2017; 8(1): 15768. https://doi.org/10.1038/ncomms15768
84. Irzhak D.V., Kokhanchik L.S., Punegov D.V., Roshchupkin D.V. Study of the specific features of lithium niobate crystals near the domain walls. Physics of the Solid State. 2009; 51(7): 1500—1502. https://doi.org/10.1134/s1063783409070452
85. Tikhonov Y., Maguire J.R., McCluskey C.J., McConville J.P.V., Kumar A., Lu H., Meier D., Razumnaya A., Gregg J.M., Gruverman A., Vinokur V.M., Luk’yanchuk I. Polarization topology at the nominally charged domain walls in uniaxial ferroelectrics. Advanced Materials. 2022; 34(45): 2203028. https://doi.org/10.1002/adma.202203028
86. Steffes J.J., Ristau R.A., Ramesh R., Huey B.D. Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy. Proceedings of the National Academy of Sciences. 2019; 116(7): 2413—2418. https://doi.org/10.1073/pnas.1806074116
87. Alikin Y.M., Turygin A.P., Alikin D.O., Shur V.Y. Tilt control of the charged domain walls created by local switching on the non-polar cut of MgO doped lithium niobate single crystals. Ferroelectrics. 2021; 574(1): 16—22. https://doi.org/10.1080/00150193.2021.1888044
88. Eyben P., Bisiaux P., Schulze A., Nazir A., Vandervorst W. Fast fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques. Nanotechnology. 2015; 26(35): 355702. https://doi.org/10.1088/0957-4484/26/35/355702
89. Shportenko A.S., Kislyuk A.M., Turutin A.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Effect of contact phenomena on the electrical conductivity of reduced lithium niobate. Modern Electronic Materials. 2021; 7(4): 167—175. https://doi.org/10.3897/j.moem.7.4.78569
90. Zhang W.J., Shen B.W., Fan H.C., Hu D., Jiang A.Q., Jiang J. Nonvolatile ferroelectric LiNbO3 domain wall crossbar memory. IEEE Electron Device Letters. 2023; 44(3): 420—423. https://doi.org/10.1109/LED.2023.3240762
91. McConville J.P.V., Lu H., Wang B., Tan Y., Cochard C., Conroy M., Moore K., Harvey A., Bangert U., Chen L., Gruverman A., Gregg J.M. Ferroelectric domain wall memristor. Advanced Functional Materials. 2020; 30(28): 2000109. https://doi.org/10.1002/adfm.202000109
92. Zahn M., Beyreuther E., Kiseleva I., Lotfy A.S., McCluskey C.J., Maguire J.R., Suna A., Rüsing M., Gregg J.M., Eng L.M. R2D2 – An equivalent-circuit model that quantitatively describes domain wall conductivity in ferroelectric LiNbO3. Condensed Matter. 2023. https://doi.org/10.48550/arXiv.2307.10322
93. Schröder M., Haußmann A., Thiessen A., Soergel E., Woike T., Eng L.M. Conducting domain walls in lithium niobate single crystals. Advanced Functional Materials. 2012; 22(18): 3936—3944. https://doi.org/110.1002/adfm.201201174
94. Godau C., Kämpfe T., Thiessen A., Eng L.M., Haußmann A. Enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano. 2017; 11(5): 4816—4824. https://doi.org/10.1021/acsnano.7b01199
95. Chai X., Lian J., Wang C., Hu X., Sun J., Jiang J., Jiang A. Conductions through head-to-head and tail-to-tail domain walls in LiNbO3 nanodevices. Journal of Alloys and Compounds. 2021; 873: 159837. https://doi.org/10.1016/j.jallcom.2021.159837
96. Wang C., Wang T., Zhang W., Jiang J., Chen L., Jiang A. Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates. Nano Research. 2022; 15(4): 3606—3613. https://doi.org/10.1007/s12274-021-3899-5
97. Chaudhary P., Lu H., Lipatov A., Ahmadi Z., McConville J.P.V., Sokolov A., Shield J.E., Sinitskii A., Gregg J.M., Gruverman A. Low-voltage domain-wall LiNbO3 memristors. Nano Letters. 2020; 20(8): 5873—5878. https://doi.org/10.1021/acs.nanolett.0c01836
98. Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.V., Shportenko A.S., Malinkovich M.D., Parkhomenko Y.N. Degradation of the electrical conductivity of charged domain walls in reduced lithium niobate crystals. Modern Electronic Materials. 2022; 8(1): 15—22. https://doi.org/10.3897/j.moem.8.1.85251
99. Shur V.Ya., Baturin I.S., Akhmatkhanov A.R., Chezganov D.S., Esin A.A. Time-dependent conduction current in lithium niobate crystals with charged domain walls. Applied Physics Letters. 2013; 103(10): 102905. https://doi.org/10.1063/1.4820351
100. Schröder M., Chen X., Haußmann A., Thiessen A., Poppe J., Bonnell D.A., Eng L.M. Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals. Materials Research Express. 2014; 1(3): 035012. https://doi.org/10.1088/2053-1591/1/3/035012
101. Gerson R., Kirchhoff J.F., Halliburton L.E., Bryan D.A. Photoconductivity parameters in lithium niobate. Journal of Applied Physics. 1986; 60(10): 3553—3557. https://doi.org/10.1063/1.337611
102. Singh E., Beccard H., Amber Z.H., Ratzenberger J., Hicks C.W., Rüsing M., Eng L.M. Tuning domain wall conductivity in bulk lithium niobate by uniaxial stress. Physical Review B. 2022; 106(14): 144103. https://doi.org/10.1103/PhysRevB.106.144103
103. Qian Y., Zhang Y., Xu J., Zhang G. Domain-wall p-n junction in lithium niobate thin film on an insulator. Physical Review Applied. 2022; 17(4): 044011. https://doi.org/10.1103/PhysRevApplied.17.044011
104. McCluskey C.J., Colbear M.G., McConville J.P.V., McCartan S.J., Maguire J.R., Conroy M., Moore K., Harvey A., Trier F., Bangert U., Gruverman A., Bibes M., Kumar A., McQuaid R.G.P., Gregg J.M. Ultrahigh carrier mobilities in ferroelectric domain wall corbino cones at room temperature. Advanced Materials. 2022; 34(32): e2204298. https://doi.org/10.1002/adma.202204298
105. Beccard H., Beyreuther E., Kirbus B., Seddon S.D., Rüsing M., Eng L.M. Hall mobilities and sheet carrier densities in a single LiNbO3 onductive ferroelectric domain wall. https://doi.org/10.48550/arXiv.2308.00061
106. Pawlik A.-S., Kämpfe T., Haußmann A., Woike T., Treske U., Knupfer M., Büchner B., Soergel E., Streubel R., Koitzsch A., Eng L.M. Polarization driven conductance variations at charged ferroelectric domain walls. Nanoscale. 2017; 9(30): 10933—10939. https://doi.org/10.1039/c7nr00217c
107. Ohmori Y., Yamaguchi M., Yoshino K., Inuishi Y. Electron hall mobility in reduced LiNbO3. Japanese Journal of Applied Physics. 1976; 15(11): 2263—2264. https://doi.org/10.1143/JJAP.15.2263
108. Palatnikov M., Makarova O., Kadetova A., Sidorov N., Teplyakova N., Biryukova I., Tokko O. Structure, optical properties and physicochemical features of LiNbO3:Mg,B crystals grown in a single technological cycle: an optical material for converting laser radiation. Materials. 2023; 16(13): 4541. https://doi.org/10.3390/ma16134541
109. Volk T., Wöhlecke M., Reichert A., Jermann F., Rubinina N. The peculiar impurity concentration ranges in damage-resistant LiNbO3 crystals doped with Mg, Zn, In and Sn. Ferroelectrics Letters Section. 1995; 20(3-4): 97—103. https://doi.org/10.1080/07315179508204289
110. Hu M.-L., Hu L.-J., Chang J.-Y. Polarization switching of pure and MgO-doped lithium niobate crystals. Japanese Journal of Applied Physics. 2003; 42(12, Pt 1): 7414—7417. https://doi.org/10.1143/JJAP.42.7414
111. Yatsenko A.V., Evdokimov S.V., Palatnikov M.N., Sidorov N.V. Analysis of the conductivity and current-voltage characteristics nonlinearity in LiNbO3 crystals of various compositions at temperatures 300—450 K. Solid State Ionics. 2021; 365(2): 115651. https://doi.org/10.1016/j.ssi.2021.115651
112. Yatsenko A.V., Evdokimov S.V., Shul’gin V.F., Palatnikov M.N., Sidorov N.V., Makarova O.V. Effect of magnesium impurity concentration on electrical properties of LiNbO3 crystals. Physics of the Solid State. 2021; 63(12): 1851—1856. https://doi.org/10.1134/S1063783421100401
113. Li Y., Zheng Y., Tu X., Xiong K., Lin Q., Shi E. The high temperature resistivityof lithium niobate and related crystals. In: Proceed. of the 2014 Symposium on piezoelectricity, acoustic waves, and device applications (SPAWDA). Beijing, China. 30 October 2014 — 02 November 2014. IEEE; 2014. P. 283—286. https://doi.org/10.1109/SPAWDA.2014.6998581
114. Polgár K., Kovács L., Földvári I., Cravero I. Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals. Solid State Communications. 1986; 59(6): 375—379. https://doi.org/10.1016/0038-1098(86)90566-1
115. Schirmer O.F., Imlau M., Merschjann C., Schoke B. Electron small polarons and bipolarons in LiNbO3. Journal of Physics: Condensed Matter. 2009; 21(12): 123201. https://doi.org/10.1088/0953-8984/21/12/123201
116. Guilbert L., Vittadello L., Bazzan M., Mhaouech I., Messerschmidt S., Imlau M. The elusive role of Nb Li bound polaron energy in hopping charge transport in Fe: LiNbO3. Journal of Physics: Condensed Matter. 2018; 30(12): 125701. https://doi.org/10.1088/1361-648X/aaad34
117. Faust B., Muller H., Schirmer O.F. Free small polarons in LiNbO3. Ferroelectrics. 1994; 153(1): 297—302. https://doi.org/10.1080/00150199408016583
118. García-Cabaes A., Sanz-García J.A., Cabrera J.M., Agulló-López F., Zaldo C., Pareja R., Polgár K., Raksányi K., Fölvàri I. Influence of stoichiometry on defect-related phenomena in LiNbO3. Physical Review B. 1988; 37(11): 6085—6091. https://doi.org/10.1103/PhysRevB.37.6085
119. Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.V., Malinkovich M.D., Polisan A.A., Parkhomenko Y.N. Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy. Modern Electronic Materials. 2019; 5(2): 51—60. https://doi.org/10.3897/j.moem.5.2.51314
120. Jiang J., Chai X., Wang C., Jiang A. High temperature ferroelectric domain wall memory. Journal of Alloys and Compounds. 2021; 856: 158155. https://doi.org/10.1016/j.jallcom.2020.158155
121. Niu L., Qiao X., Lu H., Fu W., Liu Y., Bi K., Mei L., You Y., Chou X., Geng W. Diode-like behavior based on conductive domain wall in LiNbO ferroelectric single-crystal thin film. IEEE Electron Device Letters. 2023; 44(1): 52—55. https://doi.org/10.1109/LED.2022.3224915
122. Suna A., McCluskey C.J., Maguire J. R., Kumar A., McQuaid R.G.P., Gregg J.M. Ferroelectric domain wall logic gates. https://doi.org/10.48550/arXiv.2209.08133
123. Wang J., Ma J., Huang H., Ma J., Jafri H.M., Fan Y., Yang H., Wang Y., Chen M., Liu D., Zhang J., Lin Y.-H., Chen L.-Q., Yi D., Nan C.-W. Ferroelectric domain-wall logic units. Nature Communications. 2022; 13(1): 3255. https://doi.org/10.1038/s41467-022-30983-4
124. Park B.-E., Ishiwara H., Okuyama M., Sakai S., Yoon S.-M. (eds.). Ferroelectric-gate field effect transistor memories : Device physics and applications (Topics in applied physics book 131). Dordrecht: Springer Netherlands; 2016. 350 p. https://doi.org/10.1007/978-94-024-0841-6
125. Lupascu D.C. Fatigue in ferroelectric ceramics and related issues. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. Vol. 61. 228 p. https://doi.org/10.1007/978-3-662-07189-2
126. Baeumer C., Saldana-Greco D., Martirez J.M.P., Rappe A.M., Shim M., Martin L.W. Ferroelectrically driven spatial carrier density modulation in graphene. Nature Communications. 2015; 6(1): 6136. https://doi.org/10.1038/ncomms7136
127. Chai X., Jiang J., Zhang Q., Hou X., Meng F., Wang J., Gu L., Zhang D. W., Jiang A. Q. Nonvolatile ferroelectric field-effect transistors. Nature Communications. 2020; 11(1): 2811. https://doi.org/10.1038/s41467-020-16623-9
128. Sun J., Li Y., Zhang B., Jiang A. High-power LiNbO3 domain-wall nanodevices. ACS Applied Materials & Interfaces. 2023; 15(6): 8691—8698. https://doi.org/110.1021/acsami.2c20579
Review
For citations:
Kislyuk A.M., Kubasov I.V., Turutin A.V., Temirov A.A., Shportenko A.S., Kuts V.V., Malinkovich M.D. Electrophysical properties, memristive and resistive switching in charged domain walls in lithium niobate. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(1):35-55. (In Russ.) https://doi.org/10.17073/1609-3577j.met202310.565